Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Avian Dis ; 54(1 Suppl): 538-47, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20521691

RESUMEN

Highly pathogenic (HP) H5N1 avian influenza (AI) is enzootic in several countries of Asia and Africa and constitutes a major threat, at the world level, for both animal and public health. Ducks play an important role in the epidemiology of AI, including HP H5N1 AI. Although vaccination can be a useful tool to control AI, duck vaccination has not proved very efficient in the field, indicating a need to develop new vaccines and a challenge model to evaluate the protection for duck species. Although Muscovy duck is the duck species most often reared in France, the primary duck-producing country in Europe, and is also produced in Asia, it is rarely studied. Our team recently demonstrated a good cross-reactivity with hemagglutinin from clade 2.2 and inferred that this could be a good vaccine candidate for ducks. Two challenges using two French H5N1 HP strains, 1) A/mute swan/France/06299/06 (Swan/06299), clade 2.2.1, and 2) A/mute swan/France/070203/07 (Swan/070203), clade 2.2 (but different from subclade 2.2.1), were performed (each) on 20 Muscovy ducks (including five contacts) inoculated by oculo-nasal route (6 log10 median egg infectious doses per duck). Clinical signs were recorded daily, and cloacal and oropharyngeal swabs were collected throughout the assay. Autopsies were done on all dead ducks, and organs were taken for analyses. Virus was measured by quantitative reverse transcriptase-PCR based on the M gene AI virus. Ducks presented severe nervous signs in both challenges. Swan/070203 strain led to 80% morbidity (12/15 sick ducks) and 73% mortality (11/15 ducks) at 13.5 days postinfection (dpi), whereas Swan/06299 strain produced 100% mortality at 6.5 dpi. Viral RNA load was significantly lower via the cloacal route than via the oropharyngeal route in both trials, presenting a peak in the first challenge at 3.5 dpi and being more stable in the second challenge. The brain was the organ containing the highest viral RNA load in both challenges. Viral RNA load in a given organ was similar or statistically significantly higher in ducks challenged with Swan/06299 strain. Thus, the Swan/06299 strain was more virulent and could be used as a putative challenge model. Moreover, challenged ducks and contacts contained the same amounts of viral RNA load, demonstrating the rapid and efficient transmission of H5N1 HP in Muscovy ducks in our experimental conditions.


Asunto(s)
Patos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Gripe Aviar/virología , Animales , Encéfalo/virología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/mortalidad , Gripe Aviar/patología , Riñón/virología , Páncreas/virología , ARN Viral/análisis , Tráquea/virología , Carga Viral , Esparcimiento de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA