Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e16022, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842065

RESUMEN

Background: Broad-scale monitoring of arthropods is often carried out with passive traps (e.g., Malaise traps) that can collect thousands of specimens per sample. The identification of individual specimens requires time and taxonomic expertise, limiting the geographical and temporal scale of research and monitoring studies. DNA metabarcoding of bulk-sample homogenates has been found to be faster, efficient and reliable, but the destruction of samples prevents a posteriori validation of species occurrences and relative abundances. Non-destructive metabarcoding of DNA extracted from collection medium has been applied in a limited number of studies, but further tests of efficiency are required with different trap types and collection media to assess the consistency of the method. Methods: We quantified the detection rate of arthropod species when applying non-destructive DNA metabarcoding with a short (127-bp) fragment of mitochondrial COI on two combinations of passive traps and collection media: (1) water with monopropylene glycol (H2O-MPG) used in window-flight traps (WFT, 53 in total); (2) ethanol with monopropylene glycol (EtOH-MPG) used in Malaise traps (MT, 27 in total). We then compared our results with those obtained for the same samples using morphological identification (for WFTs) or destructive metabarcoding of bulk homogenate (for MTs). This comparison was applied as part of a larger study of arthropod species richness in silver fir (Abies alba Mill., 1759) stands across a range of climate-induced tree dieback levels and forest management strategies. Results: Of the 53 H2O-MPG samples from WFTs, 16 produced no metabarcoding results, while the remaining 37 samples yielded 77 arthropod MOTUs in total, of which none matched any of the 343 beetle species morphologically identified from the same traps. Metabarcoding of 26 EtOH-MPG samples from MTs detected more arthropod MOTUs (233) than destructive metabarcoding of homogenate (146 MOTUs, 8 orders), of which 71 were shared MOTUs, though MOTU richness per trap was similar between treatments. While we acknowledge the failure of metabarcoding from WFT-derived collection medium (H2O-MPG), the treatment of EtOH-based Malaise trapping medium remains promising. We conclude however that DNA metabarcoding from collection medium still requires further methodological developments and cannot replace homogenate metabarcoding as an approach for arthropod monitoring. It can be used nonetheless as a complementary treatment when enhancing the detection of soft-bodied arthropods like spiders and Diptera.


Asunto(s)
Biodiversidad , Dípteros , Animales , Código de Barras del ADN Taxonómico/métodos , ADN/genética , Dípteros/genética , Etanol , Glicoles
2.
Ecol Lett ; 26(7): 1157-1173, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37156097

RESUMEN

The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with increasing trophic level from primary consumers to predators, with reciprocal effects of ambient energy. Yet, empirical tests are lacking. We compiled data on 332,557 deadwood-inhabiting beetles of 901 species reared from wood of 49 tree species across Europe. Using host-phylogeny-controlled models, we show that the relative importance of substrate energy versus ambient energy decreases with increasing trophic levels: the diversity of zoophagous and mycetophagous beetles was determined by ambient energy, while non-structural carbohydrate content in woody tissues determined that of xylophagous beetles. Our study thus overall supports the species-energy hypothesis and specifies that the relative importance of ambient temperature increases with increasing trophic level with opposite effects for substrate energy.


Asunto(s)
Escarabajos , Ecosistema , Animales , Árboles , Madera , Biodiversidad , Europa (Continente)
3.
Sci Total Environ ; 832: 154926, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35364149

RESUMEN

Increasing urbanisation is one of the primary drivers of land-use change that threaten biodiversity. Wild bee communities have been reported with contrasting responses to urbanisation, with varying effects on abundance and taxonomical diversity. The suite of functional traits exhibited by wild bee species might determine their persistence in urban areas. Urbanisation thus can impose an environmental filter with potential consequences on the functional and phylogenetical diversity of wild bee communities. Here, we sampled 2944 wild bee specimens from 156 species in 29 sites located along an urbanisation gradient using a replicated design in three mid-sized cities in the Loire valley (France). We show that urban landscape cover has a negative effect on overall species richness and taxonomical diversity indices, while total abundance remains constant. Species loss was taxon dependent, mainly driven by Andrenidae and Halictidae. Only a few species, especially of the genus Lasioglossum, were positively affected by the urban landscape cover. Urban and peri-urban areas differed in their composition of bee assemblages. Species turnover was the main component of beta diversity, driving community dissimilarities through the urban gradient. Urbanisation favours bees with small body sizes, social structure and extended flight periods but did not affect the phylogenetic or the functional diversity of communities. Our findings have implications for understanding the factors involved in the environmental filter exerted through the urban gradient on bee communities helping to implement conservation measures and managing urban spaces for bees.


Asunto(s)
Biodiversidad , Urbanización , Animales , Abejas , Ciudades , Ecosistema , Fenotipo , Filogenia
4.
Ecol Evol ; 12(3): e8709, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342614

RESUMEN

Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.

5.
Commun Biol ; 5(1): 57, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042989

RESUMEN

Species richness, abundance and biomass of insects have recently undergone marked declines in Europe. We metabarcoded 211 Malaise-trap samples to investigate whether drought-induced forest dieback and subsequent salvage logging had an impact on ca. 3000 species of flying insects in silver fir Pyrenean forests. While forest dieback had no measurable impact on species richness, there were significant changes in community composition that were consistent with those observed during natural forest succession. Importantly, most observed changes were driven by rare species. Variation was explained primarily by canopy openness at the local scale, and the tree-related microhabitat diversity and deadwood amount at landscape scales. The levels of salvage logging in our study did not explain compositional changes. We conclude that forest dieback drives changes in species assemblages that mimic natural forest succession, and markedly increases the risk of catastrophic loss of rare species through homogenization of environmental conditions.


Asunto(s)
Biodiversidad , Biomasa , Bosques , Insectos , Animales , Especies en Peligro de Extinción , Francia
6.
Sci Rep ; 11(1): 4770, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637824

RESUMEN

The current decline of wild bees puts important ecosystem services such as pollination at risk. Both inventory and monitoring programs are needed to understand the causes of wild bee decline. Effective insect monitoring relies on both mass-trapping methods coupled with rapid and accurate identifications. Identifying wild bees using only morphology can be challenging, in particular, specimens from mass-trapped samples which are often in poor condition. We generated DNA barcodes for 2931 specimens representing 157 species (156 named and one unnamed species) and 28 genera. Automated cluster delineation reveals 172 BINs (Barcodes Index Numbers). A total of 36 species (22.93%) were found in highly urbanized areas. The majority of specimens, representing 96.17% of the species barcoded form reciprocally exclusive groups, allowing their unambiguous identification. This includes several closely related species notoriously difficult to identify. A total of 137 species (87.26%) show a "one-to-one" match between a named species and the BIN assignment. Fourteen species (8.92%) show deep conspecific lineages with no apparent morphological differentiation. Only two species pairs shared the same BIN making their identification with DNA barcodes alone uncertain. Therefore, our DNA barcoding reference library allows reliable identification by non-experts for the vast majority of wild bee species in the Loire Valley.


Asunto(s)
Abejas/genética , Animales , Abejas/clasificación , Ciudades , Código de Barras del ADN Taxonómico , Ecosistema , Especies en Peligro de Extinción , Francia , Biblioteca de Genes , Análisis de Secuencia de ADN
7.
Ecol Evol ; 10(24): 14209-14220, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33391711

RESUMEN

Defining mathematical terms and objects is a constant issue in ecology; often definitions are absent, erroneous, or imprecise. Through a bibliographic prospection, we show that this problem appears in macro-ecology (biogeography and community ecology) where the lack of definition for the sigmoid class of functions results in difficulties of interpretation and communication. In order to solve this problem and to help harmonize papers that use sigmoid functions in ecology, herein we propose a comprehensive definition of these mathematical objects. In addition, to facilitate their use, we classified the functions often used in the ecological literature, specifying the constraints on the parameters for the function to be defined and the curve shape to be sigmoidal. Finally, we interpreted the different properties of the functions induced by the definition through ecological hypotheses in order to support and explain the interest of such functions in ecology and more precisely in biogeography.

8.
Glob Chang Biol ; 25(2): 536-548, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30565806

RESUMEN

Policies to mitigate climate change and biodiversity loss often assume that protecting carbon-rich forests provides co-benefits in terms of biodiversity, due to the spatial congruence of carbon stocks and biodiversity at biogeographic scales. However, it remains unclear whether this holds at the scales relevant for management, and particularly large knowledge gaps exist for temperate forests and for taxa other than trees. We built a comprehensive dataset of Central European temperate forest structure and multi-taxonomic diversity (beetles, birds, bryophytes, fungi, lichens, and plants) across 352 plots. We used Boosted Regression Trees (BRTs) to assess the relationship between above-ground live carbon stocks and (a) taxon-specific richness, (b) a unified multidiversity index. We used Threshold Indicator Taxa ANalysis to explore individual species' responses to changing above-ground carbon stocks and to detect change-points in species composition along the carbon-stock gradient. Our results reveal an overall weak and highly variable relationship between richness and carbon stock at the stand scale, both for individual taxonomic groups and for multidiversity. Similarly, the proportion of win-win and trade-off species (i.e., species favored or disadvantaged by increasing carbon stock, respectively) varied substantially across taxa. Win-win species gradually replaced trade-off species with increasing carbon, without clear thresholds along the above-ground carbon gradient, suggesting that community-level surrogates (e.g., richness) might fail to detect critical changes in biodiversity. Collectively, our analyses highlight that leveraging co-benefits between carbon and biodiversity in temperate forest may require stand-scale management that prioritizes either biodiversity or carbon in order to maximize co-benefits at broader scales. Importantly, this contrasts with tropical forests, where climate and biodiversity objectives can be integrated at the stand scale, thus highlighting the need for context-specificity when managing for multiple objectives. Accounting for critical change-points of target taxa can help to deal with this specificity, by defining a safe operating space to manipulate carbon while avoiding biodiversity losses.


Asunto(s)
Biodiversidad , Carbono/análisis , Cambio Climático , Bosques , Francia , Hungría , Italia
9.
Biodivers Data J ; (3): e4078, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25829855

RESUMEN

Saproxylic beetles - associated with dead wood or with other insects, fungi and microorganisms that decompose it - play a major role in forest nutrient cycling. They are important ecosystem service providers and are used as key bio-indicators of old-growth forests. In France alone, where the present study took place, there are about 2500 species distributed within 71 families. This high diversity represents a major challenge for specimen sorting and identification. The PASSIFOR project aims at developing a DNA metabarcoding approach to facilitate and enhance the monitoring of saproxylic beetles as indicators in ecological studies. As a first step toward that goal we assembled a library of DNA barcodes using the standard genetic marker for animals, i.e. a portion of the COI mitochondrial gene. In the present contribution, we release a library including 656 records representing 410 species in 40 different families. Species were identified by expert taxonomists, and each record is linked to a voucher specimen to enable future morphological examination. We also highlight and briefly discuss cases of low interspecific divergences, as well as cases of high intraspecific divergences that might represent cases of overlooked or cryptic diversity.

10.
Ecol Evol ; 4(4): 370-80, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24634722

RESUMEN

Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.

11.
Conserv Biol ; 27(3): 605-14, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23432190

RESUMEN

With the aim of wood production with negligible negative effects on biodiversity and ecosystem processes, a silvicultural practice of selective logging with natural regeneration has been implemented in European beech forests (Fagus sylvatica) during the last decades. Despite this near-to-nature strategy, species richness of various taxa is lower in these forests than in unmanaged forests. To develop guidelines to minimize the fundamental weaknesses in the current practice, we linked functional traits of saproxylic beetle species to ecosystem characteristics. We used continental-scale data from 8 European countries and regional-scale data from a large forest in southern Germany and forest-stand variables that represented a gradient of intensity of forest use to evaluate the effect of current near-to-nature management strategies on the functional diversity of saproxylic beetles. Forest-stand variables did not have a statistically significant effect on overall functional diversity, but they did significantly affect community mean and diversity of single functional traits. As the amount of dead wood increased the composition of assemblages shifted toward dominance of larger species and species preferring dead wood of large diameter and in advanced stages of decay. The mean amount of dead wood across plots in which most species occurred was from 20 to 60 m(3) /ha. Species occurring in plots with mean dead wood >60 m(3) /ha were consistently those inhabiting dead wood of large diameter and in advanced stages of decay. On the basis of our results, to make current wood-production practices in beech forests throughout Europe more conservation oriented (i.e., promoting biodiversity and ecosystem functioning), we recommend increasing the amount of dead wood to >20 m(3) /ha; not removing dead wood of large diameter (50 cm) and allowing more dead wood in advanced stages of decomposition to develop; and designating strict forest reserves, with their exceptionally high amounts of dead wood, that would serve as refuges for and sources of saproxylic habitat specialists.


Asunto(s)
Escarabajos/fisiología , Fagus , Árboles , Animales , Biodiversidad , Tamaño Corporal , Escarabajos/anatomía & histología , Conservación de los Recursos Naturales/métodos , Europa (Continente) , Agricultura Forestal/métodos , Dinámica Poblacional
12.
C R Biol ; 328(10-11): 936-48, 2005.
Artículo en Francés | MEDLINE | ID: mdl-16286083

RESUMEN

The terminology of ecological groups in saproxylic insects (organisms depending on dying or dead wood) is used ambiguously by forest entomologists. We therefore propose a standardized typology of wood-eating groups, based on two crossed factors, i.e. nature and physiological status of woody tissues. We define primary and secondary xylophagous insects (corticiphagous, cambiophagous, xylemophagous), as well as saproxylophagous species. Insects indirectly related to dead wood are classified according to (i) the food regime: consumers of wood-associated resources (xylomycophagous, xylomycetophagous, opophagous), commensals (scavengers), predators, or (ii) the microhabitat users (fongicolous, cavicolous, succicolous).


Asunto(s)
Entomología , Insectos/clasificación , Terminología como Asunto , Árboles , Animales , Cadena Alimentaria , Hongos , Madera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...