Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 178: 108103, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494814

RESUMEN

There is a growing evidence that methylation at the N6 position of adenine (6-mA), whose modulation occurs primarily during development, would be a reliable epigenetic marker in eukaryotic organisms. The present study raises the question as to whether early-life exposure to α-hexabromocyclododecane (α-HBCDD), a brominated flame retardant, may trigger modifications in 6-mA epigenetic hallmarks in the brain during the development which, in turn could affect the offspring behaviour in adulthood. Pregnant Wistar rats were split into two groups: control and α-HBCDD (66 ng/kg/per os, G0-PND14). At PND1, α-HBCDD levels were assessed in brain and liver by LC-MS/MS. At PND14, DNA was isolated from the offspring's cerebellum. DNA methylation was measured by 6-mA-specific immunoprecipitation and Illumina® sequencing (MEDIP-Seq). Locomotor activity was finally evaluated at PND120. In our early-life exposure model, we confirmed that α-HBCDD can cross the placental barrier and be detected in pups at birth. An obvious post-exposure phenotype with locomotor deficits was observed when the rats reached adulthood. This was accompanied by sex-specific over-methylation of genes involved in the insulin signaling pathway, MAPK signaling pathway as well as serotonergic and GABAergic synapses, potentially altering the normal process of neurodevelopment with consequent motor impairments crystalized at adulthood.


Asunto(s)
Retardadores de Llama , Hidrocarburos Bromados , Masculino , Animales , Ratas , Femenino , Embarazo , Cromatografía Liquida , Ratas Wistar , Placenta/metabolismo , Espectrometría de Masas en Tándem , Hidrocarburos Bromados/toxicidad , Hidrocarburos Bromados/metabolismo , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Cerebelo/metabolismo , Epigénesis Genética
2.
Arch Toxicol ; 95(9): 3085-3099, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34189592

RESUMEN

Limited studies in humans and in animal models have investigated the neurotoxic risks related to a gestational exposure to diesel exhaust particles (DEP) on the embryonic brain, especially those regarding monoaminergic systems linked to neurocognitive disorders. We previously showed that exposure to DEP alters monoaminergic neurotransmission in fetal olfactory bulbs and modifies tissue morphology along with behavioral consequences at birth in a rabbit model. Given the anatomical and functional connections between olfactory and central brain structures, we further characterized their impacts in brain regions associated with monoaminergic neurotransmission. At gestational day 28 (GD28), fetal rabbit brains were collected from dams exposed by nose-only to either a clean air or filtered DEP for 2 h/day, 5 days/week, from GD3 to GD27. HPLC dosage and histochemical analyses of the main monoaminergic systems, i.e., dopamine (DA), noradrenaline (NA), and serotonin (5-HT) and their metabolites were conducted in microdissected fetal brain regions. DEP exposure increased the level of DA and decreased the dopaminergic metabolites ratios in the prefrontal cortex (PFC), together with sex-specific alterations in the hippocampus (Hp). In addition, HVA level was increased in the temporal cortex (TCx). Serotonin and 5-HIAA levels were decreased in the fetal Hp. However, DEP exposure did not significantly modify NA levels, tyrosine hydroxylase, tryptophan hydroxylase or AChE enzymatic activity in fetal brain. Exposure to DEP during fetal life results in dopaminergic and serotonergic changes in critical brain regions that might lead to detrimental potential short-term neural disturbances as precursors of long-term neurocognitive consequences.


Asunto(s)
Encéfalo/efectos de los fármacos , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Emisiones de Vehículos/toxicidad , Animales , Encéfalo/embriología , Dopamina/metabolismo , Femenino , Masculino , Norepinefrina/metabolismo , Embarazo , Conejos , Serotonina/metabolismo , Factores Sexuales , Transmisión Sináptica/efectos de los fármacos , Factores de Tiempo
3.
Part Fibre Toxicol ; 16(1): 5, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30654819

RESUMEN

BACKGROUND: Airborne pollution, especially from diesel exhaust (DE), is known to have a negative effect on the central nervous system in exposed human populations. However, the consequences of gestational exposure to DE on the fetal brain remain poorly explored, with various effects depending on the conditions of exposure, as well as little information on early developmental stages. We investigated the short-term effects of indirect DE exposure throughout gestation on the developing brain using a rabbit model. We analyzed fetal olfactory tissues at the end of gestation and tested behaviors relevant to pups' survival at birth. Pregnant dams were exposed by nose-only inhalation to either clean air or DE with a content of particles (DEP) adjusted to 1 mg/m3 by diluting engine exhaust, for 2 h/day, 5 days/week, from gestational day 3 (GD3) to day 27 (GD27). At GD28, fetal olfactory mucosa, olfactory bulbs and whole brains were collected for anatomical and neurochemical measurements. At postnatal day 2 (PND2), pups born from another group of exposed or control female were examined for their odor-guided behavior in response to the presentation of the rabbit mammary pheromone 2-methyl-3-butyn-2-ol (2MB2). RESULTS: At GD28, nano-sized particles were observed in cilia and cytoplasm of the olfactory sensory neurons in the olfactory mucosa and in the cytoplasm of periglomerular cells in the olfactory bulbs of exposed fetuses. Moreover, cellular and axonal hypertrophies were observed throughout olfactory tissues. Concomitantly, fetal serotoninergic and dopaminergic systems were affected in the olfactory bulbs. Moreover, the neuromodulatory homeostasis was disturbed in a sex-dependent manner in olfactory tissues. At birth, the olfactory sensitivity to 2MB2 was reduced in exposed PND2 pups. CONCLUSION: Gestational exposure to DE alters olfactory tissues and affects monoaminergic neurotransmission in fetuses' olfactory bulbs, resulting in an alteration of olfactory-based behaviors at birth. Considering the anatomical and functional continuum between the olfactory system and other brain structures, and due to the importance of monoamine neurotransmission in the plasticity of neural circuits, such alterations could participate to disturbances in higher integrative structures, with possible long-term neurobehavioral consequences.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Conducta Animal/efectos de los fármacos , Desarrollo Fetal/efectos de los fármacos , Bulbo Olfatorio/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/farmacocinética , Animales , Animales Recién Nacidos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Exposición por Inhalación , Masculino , Bulbo Olfatorio/embriología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/ultraestructura , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Conejos , Neuronas Serotoninérgicas/efectos de los fármacos , Neuronas Serotoninérgicas/metabolismo , Factores Sexuales , Transmisión Sináptica/efectos de los fármacos , Distribución Tisular
4.
Microsc Res Tech ; 61(2): 185-90, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12740825

RESUMEN

Peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the nuclear hormone receptor superfamily that can be activated by natural fatty acids and various xenobiotics, including clofibrate. This transcription factor primarily regulates genes involved in lipid metabolism and homeostasis. We present the expression pattern of the PPARalpha subtype in the adult jerboa Jaculus orientalis, determined by RT-PCR and Western blotting using specific probes and a polyclonal antibody for PPARalpha, respectively. PPARalpha is highly expressed in liver and kidney, and to a lesser extent in duodenum and colon. PPARalpha expression is increased at the mRNA and protein levels in liver and duodenum of jerboa treated for 2 weeks with the peroxisome proliferator (PP) clofibrate. The induction is tissue-specific as no significant changes are observed in kidney and colon. The present data indicate that the PP-induced PPARalpha gene expression is not dependent on the PPARalpha content in target cells.


Asunto(s)
Clofibrato/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proliferadores de Peroxisomas/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Roedores/metabolismo , Factores de Transcripción/metabolismo , Animales , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA