Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34162668

RESUMEN

IKZF1 encodes Ikaros, a zinc finger-containing transcription factor crucial to the development of the hematopoietic system. Germline pathogenic variants in IKZF1 have been reported in patients with acute lymphocytic leukemia and immunodeficiency syndromes. Diamond-Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome characterized by erythroid hypoplasia, associated with a spectrum of congenital anomalies and an elevated risk of certain cancers. DBA is usually caused by heterozygous pathogenic variants in genes that function in ribosomal biogenesis; however, in many cases the genetic etiology is unknown. We identified a germline IKZF1 variant, rs757907717 C > T, in identical twins with DBA-like features and autoimmune gastrointestinal disease. rs757907717 C > T results in a p.R381C amino acid change in the IKZF1 Ik-x isoform (p.R423C on isoform Ik-1), which we show is associated with altered global gene expression and perturbation of transcriptional networks involved in hematopoietic system development. These data suggest that this missense substitution caused a DBA-like syndrome in this family because of alterations in hematopoiesis, including dysregulation of networks essential for normal erythropoiesis and the immune system.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Enfermedades en Gemelos/genética , Mutación de Línea Germinal , Hematopoyesis/genética , Factor de Transcripción Ikaros/genética , Regulación de la Expresión Génica , Humanos , Lactante , Masculino , Mutación Missense , Linaje , Isoformas de Proteínas/genética , Estabilidad Proteica , Transcriptoma
2.
PLoS Med ; 13(12): e1002162, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27923066

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer and has a high risk of distant metastasis at every disease stage. We aimed to characterize the genomic landscape of LUAD and identify mutation signatures associated with tumor progression. METHODS AND FINDINGS: We performed an integrative genomic analysis, incorporating whole exome sequencing (WES), determination of DNA copy number and DNA methylation, and transcriptome sequencing for 101 LUAD samples from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We detected driver genes by testing whether the nonsynonymous mutation rate was significantly higher than the background mutation rate and replicated our findings in public datasets with 724 samples. We performed subclonality analysis for mutations based on mutant allele data and copy number alteration data. We also tested the association between mutation signatures and clinical outcomes, including distant metastasis, survival, and tumor grade. We identified and replicated two novel candidate driver genes, POU class 4 homeobox 2 (POU4F2) (mutated in 9 [8.9%] samples) and ZKSCAN1 (mutated in 6 [5.9%] samples), and characterized their major deleterious mutations. ZKSCAN1 was part of a mutually exclusive gene set that included the RTK/RAS/RAF pathway genes BRAF, EGFR, KRAS, MET, and NF1, indicating an important driver role for this gene. Moreover, we observed strong associations between methylation in specific genomic regions and somatic mutation patterns. In the tumor evolution analysis, four driver genes had a significantly lower fraction of subclonal mutations (FSM), including TP53 (p = 0.007), KEAP1 (p = 0.012), STK11 (p = 0.0076), and EGFR (p = 0.0078), suggesting a tumor initiation role for these genes. Subclonal mutations were significantly enriched in APOBEC-related signatures (p < 2.5×10-50). The total number of somatic mutations (p = 0.0039) and the fraction of transitions (p = 5.5×10-4) were associated with increased risk of distant metastasis. Our study's limitations include a small number of LUAD patients for subgroup analyses and a single-sample design for investigation of subclonality. CONCLUSIONS: These data provide a genomic characterization of LUAD pathogenesis and progression. The distinct clonal and subclonal mutation signatures suggest possible diverse carcinogenesis pathways for endogenous and exogenous exposures, and may serve as a foundation for more effective treatments for this lethal disease. LUAD's high heterogeneity emphasizes the need to further study this tumor type and to associate genomic findings with clinical outcomes.


Asunto(s)
Adenocarcinoma/genética , Metilación de ADN , Neoplasias Pulmonares/genética , Adenocarcinoma/etiología , Adenocarcinoma/patología , Adenocarcinoma/fisiopatología , Adenocarcinoma del Pulmón , Adulto , Anciano , Exoma , Femenino , Genómica , Humanos , Italia , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/fisiopatología , Masculino , Persona de Mediana Edad , Mutación , Estudios Retrospectivos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...