Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(10)2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37408206

RESUMEN

BACKGROUND: Obese and pre-diabetic women have a higher risk for cardiovascular death than age-matched men with the same symptoms, and there are no effective treatments. We reported that obese and pre-diabetic female Zucker Diabetic Fatty (ZDF-F) rats recapitulate metabolic and cardiac pathology of young obese and pre-diabetic women and exhibit suppression of cardio-reparative AT2R. Here, we investigated whether NP-6A4, a new AT2R agonist with the FDA designation for pediatric cardiomyopathy, mitigate heart disease in ZDF-F rats by restoring AT2R expression. METHODS: ZDF-F rats on a high-fat diet (to induce hyperglycemia) were treated with saline, NP-6A4 (10 mg/kg/day), or NP-6A4 + PD123319 (AT2R-specific antagonist, 5 mg/kg/day) for 4 weeks (n = 21). Cardiac functions, structure, and signaling were assessed by echocardiography, histology, immunohistochemistry, immunoblotting, and cardiac proteome analysis. RESULTS: NP-6A4 treatment attenuated cardiac dysfunction, microvascular damage (-625%) and cardiomyocyte hypertrophy (-263%), and increased capillary density (200%) and AT2R expression (240%) (p < 0.05). NP-6A4 activated a new 8-protein autophagy network and increased autophagy marker LC3-II but suppressed autophagy receptor p62 and autophagy inhibitor Rubicon. Co-treatment with AT2R antagonist PD123319 suppressed NP-6A4's protective effects, confirming that NP-6A4 acts through AT2R. NP-6A4-AT2R-induced cardioprotection was independent of changes in body weight, hyperglycemia, hyperinsulinemia, or blood pressure. CONCLUSIONS: Cardiac autophagy impairment underlies heart disease induced by obesity and pre-diabetes, and there are no drugs to re-activate autophagy. We propose that NP-6A4 can be an effective drug to reactivate cardiac autophagy and treat obesity- and pre-diabetes-induced heart disease, particularly for young and obese women.


Asunto(s)
Cardiomiopatías , Cardiopatías , Hiperglucemia , Estado Prediabético , Femenino , Ratas , Animales , Ratas Zucker , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/etiología
2.
PLoS One ; 18(3): e0282859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36928870

RESUMEN

Chemotherapy-induced impairment of autophagy is implicated in cardiac toxicity induced by anti-cancer drugs. Imperfect translation from rodent models and lack of in vitro models of toxicity has limited investigation of autophagic flux dysregulation, preventing design of novel cardioprotective strategies based on autophagy control. Development of an adult heart tissue culture technique from a translational model will improve investigation of cardiac toxicity. We aimed to optimize a canine cardiac slice culture system for exploration of cancer therapy impact on intact cardiac tissue, creating a translatable model that maintains autophagy in culture and is amenable to autophagy modulation. Canine cardiac tissue slices (350 µm) were generated from left ventricular free wall collected from euthanized client-owned dogs (n = 7) free of cardiovascular disease at the Foster Hospital for Small Animals at Tufts University. Cell viability and apoptosis were quantified with MTT assay and TUNEL staining. Cardiac slices were challenged with doxorubicin and an autophagy activator (rapamycin) or inhibitor (chloroquine). Autophagic flux components (LC3, p62) were quantified by western blot. Cardiac slices retained high cell viability for >7 days in culture and basal levels of autophagic markers remained unchanged. Doxorubicin treatment resulted in perturbation of the autophagic flux and cell death, while rapamycin co-treatment restored normal autophagic flux and maintained cell survival. We developed an adult canine cardiac slice culture system appropriate for studying the effects of autophagic flux that may be applicable to drug toxicity evaluations.


Asunto(s)
Cardiotoxicidad , Miocitos Cardíacos , Animales , Perros , Miocitos Cardíacos/metabolismo , Cardiotoxicidad/metabolismo , Autofagia , Doxorrubicina/farmacología , Doxorrubicina/metabolismo , Sirolimus/farmacología
3.
Nat Biomed Eng ; 6(9): 1045-1056, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817962

RESUMEN

Autophagy-the lysosomal degradation of cytoplasmic components via their sequestration into double-membraned autophagosomes-has not been detected non-invasively. Here we show that the flux of autophagosomes can be measured via magnetic resonance imaging or serial near-infrared fluorescence imaging of intravenously injected iron oxide nanoparticles decorated with cathepsin-cleavable arginine-rich peptides functionalized with the near-infrared fluorochrome Cy5.5 (the peptides facilitate the uptake of the nanoparticles by early autophagosomes, and are then cleaved by cathepsins in lysosomes). In the heart tissue of live mice, the nanoparticles enabled quantitative measurements of changes in autophagic flux, upregulated genetically, by ischaemia-reperfusion injury or via starvation, or inhibited via the administration of a chemotherapeutic or the antibiotic bafilomycin. In mice receiving doxorubicin, pre-starvation improved cardiac function and overall survival, suggesting that bursts of increased autophagic flux may have cardioprotective effects during chemotherapy. Autophagy-detecting nanoparticle probes may facilitate the further understanding of the roles of autophagy in disease.


Asunto(s)
Autofagia , Colorantes Fluorescentes , Nanopartículas , Espectroscopía Infrarroja Corta , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Arginina/química , Autofagia/efectos de los fármacos , Carbocianinas/química , Catepsinas/química , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Colorantes Fluorescentes/química , Macrólidos/administración & dosificación , Macrólidos/farmacología , Imagen por Resonancia Magnética/métodos , Ratones , Nanopartículas/química , Espectroscopía Infrarroja Corta/métodos
4.
Autophagy ; 17(7): 1791-1793, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34057021

RESUMEN

The primary cilium (PC), a plasma membrane microtubule-based structure, is a sensor of extracellular chemical and mechanical stress stimuli. Upon ciliogenesis, the autophagy protein ATG16L1 and the ciliary protein IFT20 are co-transported to the PC. We demonstrated in a recent study that IFT20 and ATG16L1 interact in a multiprotein complex. This interaction is mediated by the ATG16L1 WD40 domain and an ATG16L1-binding motif newly identified in IFT20. ATG16L1-deficient cells are decorated by giant ciliary structures hallmarked by defects in PC-associated signaling. These structures uncommonly accumulate phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2) while phosphatidylinositol-4-phosphate (PtdIns4P), a lipid normally concentrated in the PC, is excluded. We show that INPP5E, a phosphoinositide-associated phosphatase responsible for PtdIns4P generation, is a partner of ATG16L1 in this context. Perturbation of the ATG16L1-IFT20 complex alters INPP5E trafficking and proper function at the ciliary membrane. Altogether, these results reveal a novel autophagy-independent function of ATG16L1 that contributes to proper PC dynamics and function.


Asunto(s)
Autofagia , Monoéster Fosfórico Hidrolasas , Cilios , Proteínas
5.
Cell Rep ; 35(4): 109045, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33910006

RESUMEN

The primary cilium (PC) regulates signalization linked to external stress sensing. Previous works established a functional interplay between the PC and the autophagic machinery. When ciliogenesis is promoted by serum deprivation, the autophagy protein ATG16L1 and the ciliary protein IFT20 are co-transported to the PC. Here, we demonstrate that IFT20 and ATG16L1 are part of the same complex requiring the WD40 domain of ATG16L1 and a Y-E-F-I motif in IFT20. We show that ATG16L1-deficient cells exhibit aberrant ciliary structures, which accumulate PI4,5P2, whereas PI4P, a lipid normally concentrated in the PC, is absent. Finally, we demonstrate that INPP5E, a phosphoinositide-associated phosphatase responsible for PI4P generation, interacts with ATG16L1 and that a perturbation of the ATG16L1/IFT20 complex alters its trafficking to the PC. Altogether, our results reveal a function of ATG16L1 in ciliary lipid and protein trafficking, thus directly contributing to proper PC dynamics and functions.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Proteínas Portadoras/metabolismo , Cilios/metabolismo , Fosfatidilinositoles/metabolismo , Humanos
6.
Autophagy ; 16(6): 1143-1144, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32102612

RESUMEN

Primary cilium-dependent macroautophagy/autophagy is induced by the urinary flow in epithelial cells of the kidney proximal tubule. A major physiological outcome of this cascade is the control of cell size. Some components of the ATG machinery are recruited at the primary cilium to generate autophagic structures. Shear stress induced by the liquid flow promotes PtdIns3P synthesis at the primary cilium, and this lipid is required both for ciliogenesis and initiation of autophagy. We showed that PtdIns3P is generated by PIK3C2A, but not by PIK3C3/VPS34, during flow-associated primary cilium-dependent autophagy, in a ULK1-independent manner. Along the same line BECN1 (beclin 1), a partner of PIK3C3 in starvation-induced autophagy, is not recruited at the primary cilium under shear stress. Thus, kidney epithelial cells mobilize different PtdIns 3-kinases, i.e., PIK3C2A or PIK3C3, to produce PtdIns3P in order to initiate autophagy depending on the stimuli (shear stress or starvation). ABBREVIATIONS: PtdIns3P: phosphatidylinositol-3-phosphate; PIK3C2A: class two alpha phosphatidylinositol 3-kinase; PIK3C3/VPS34: class three phosphatidylinositol 3-kinase; ATG: autophagy associated genes.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III , Cilios , Fosfatos de Fosfatidilinositol
7.
Nat Commun ; 11(1): 294, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941925

RESUMEN

Cells subjected to stress situations mobilize specific membranes and proteins to initiate autophagy. Phosphatidylinositol-3-phosphate (PI3P), a crucial lipid in membrane dynamics, is known to be essential in this context. In addition to nutriments deprivation, autophagy is also triggered by fluid-flow induced shear stress in epithelial cells, and this specific autophagic response depends on primary cilium (PC) signaling and leads to cell size regulation. Here we report that PI3KC2α, required for ciliogenesis and PC functions, promotes the synthesis of a local pool of PI3P upon shear stress. We show that PI3KC2α depletion in cells subjected to shear stress abolishes ciliogenesis as well as the autophagy and related cell size regulation. We finally show that PI3KC2α and VPS34, the two main enzymes responsible for PI3P synthesis, have different roles during autophagy, depending on the type of cellular stress: while VPS34 is clearly required for starvation-induced autophagy, PI3KC2α participates only in shear stress-dependent autophagy.


Asunto(s)
Autofagia/fisiología , Cilios/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Línea Celular , Tamaño de la Célula , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Ratones Endogámicos C57BL , Ratones Mutantes , Fosfatidilinositol 3-Quinasas/genética , Estrés Mecánico
8.
Biochimie ; 166: 286-292, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31212039

RESUMEN

Cilia are microtubule-based organelles located at the cell surface of many eukaryotic cell types. Cilia control different cellular functions ranging from motility (for motile cilia) to signal transduction pathways (for primary cilia). A variety of signaling pathways are coordinated by this organelle during development, cell migration and cell differentiation. Interestingly, aberrant ciliogenesis or altered cilium signaling has been associated with human diseases, notably in cancer. Disruption of cilia through mutation of genes encoding cilia proteins has been also linked to multiple human disorders referred as ciliopathies. Recent studies highlight the interplay between cilia and proteostasis. Here we review findings regarding the crosstalk between cilia and two proteolytic systems, the ubiquitin proteasome system and the autophagy-lysosomal system and discuss the potential implications in human disease including ciliopathies.


Asunto(s)
Autofagia , Cilios/enzimología , Ciliopatías/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Lisosomas/enzimología , Ratones , Transducción de Señal
9.
Cell Stress ; 3(3): 100-109, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31225504

RESUMEN

Autophagy is a conserved molecular pathway directly involved in the degradation and recycling of intracellular components. Autophagy is associated with a response to stress situations, such as nutrients deficit, chemical toxicity, mechanical stress or microbial host defense. We have recently shown that primary cilium-dependent autophagy is important to control kidney epithelial cell size in response to fluid flow induced shear stress. Here we show that the ciliary protein folliculin (FLCN) actively participates to the signaling cascade leading to the stimulation of fluid flow-dependent autophagy upstream of the cell size regulation in HK2 kidney epithelial cells. The knockdown of FLCN induces a shortening of the primary cilium, inhibits the activation of AMPK and the recruitment of the autophagy protein ATG16L1 at the primary cilium. Altogether, our results suggest that FLCN is essential in the dialog between autophagy and the primary cilium in epithelial cells to integrate shear stress-dependent signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...