Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1368523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741748

RESUMEN

Saline-alkaline lakes often shelter high biomasses despite challenging conditions, owing to the occurrence of highly adapted phototrophs. Dziani Dzaha (Mayotte) is one such lake characterized by the stable co-dominance of the cyanobacterium Limnospira platensis and the picoeukaryote Picocystis salinarum throughout its water column. Despite light penetrating only into the uppermost meter, the prevailing co-dominance of these species persists even in light- and oxygen-deprived zones. Here, a depth profile of phototrophs metatranscriptomes, annotated using genomic data from isolated strains, is employed to identify expression patterns of genes related to carbon processing pathways including photosynthesis, transporters and fermentation. The findings indicate a prominence of gene expression associated with photosynthesis, with a peak of expression around 1 m below the surface, although the light intensity is very low and only red and dark red wavelengths can reach it, given the very high turbidity linked to the high biomass of L. platensis. Experiments on strains confirmed that both species do grow under these wavelengths, at rates comparable to those obtained under white light. A decrease in the expression of photosynthesis-related genes was observed in L. platensis with increasing depth, whereas P. salinarum maintained a very high pool of psbA transcripts down to the deepest point as a possible adaptation against photodamage, in the absence and/or very low levels of expression of genes involved in protection. In the aphotic/anoxic zone, expression of genes involved in fermentation pathways suggests active metabolism of reserve or available dissolved carbon compounds. Overall, L. platensis seems to be adapted to the uppermost water layer, where it is probably maintained thanks to gas vesicles, as evidenced by high expression of the gvpA gene. In contrast, P. salinarum occurs at similar densities throughout the water column, with a peak in abundance and gene expression levels which suggests a better adaptation to lower light intensities. These slight differences may contribute to limited inter-specific competition, favoring stable co-dominance of these two phototrophs.

2.
Plant Physiol ; 188(1): 509-525, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34595530

RESUMEN

Light harvesting is regulated by a process triggered by the acidification of the thylakoid lumen, known as nonphotochemical "energy-dependent quenching" (qE). In diatoms, qE is controlled by the light-harvesting complex (LHC) protein LHCX1, while the LHC stress-related (LHCSR) and photosystem II subunit S proteins are essential for green algae and plants, respectively. Here, we report a biochemical and molecular characterization of LHCX1 to investigate its role in qE. We found that, when grown under intermittent light, Phaeodactylum tricornutum forms very large qE, due to LHCX1 constitutive upregulation. This "super qE" is abolished in LHCX1 knockout mutants. Biochemical and spectroscopic analyses of LHCX1 reveal that this protein might differ in the character of binding pigments relative to the major pool of light-harvesting antenna proteins. The possibility of transient pigment binding or not binding pigments at all is discussed. Targeted mutagenesis of putative protonatable residues (D95 and E205) in transgenic P. tricornutum lines does not alter qE capacity, showing that they are not involved in sensing lumen pH, differently from residues conserved in LHCSR3. Our results suggest functional divergence between LHCX1 and LHCSR3 in qE modulation. We propose that LHCX1 evolved independently to facilitate dynamic tracking of light fluctuations in turbulent waters. The evolution of LHCX(-like) proteins in organisms with secondary red plastids, such as diatoms, might have conferred a selective advantage in the control of dynamic photoprotection, ultimately resulting in their ecological success.


Asunto(s)
Adaptación Fisiológica/genética , Diatomeas/genética , Diatomeas/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
3.
C R Biol ; 345(2): 15-38, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36847462

RESUMEN

Microalgae are prominent aquatic organisms, responsible for about half of the photosynthetic activity on Earth. Over the past two decades, breakthroughs in genomics and ecosystem biology, as well as the development of genetic resources in model species, have redrawn the boundaries of our knowledge on the relevance of these microbes in global ecosystems. However, considering their vast biodiversity and complex evolutionary history, our comprehension of algal biology remains limited. As algae rely on light, both as their main source of energy and for information about their environment, we focus here on photosynthesis, photoperception, and chloroplast biogenesis in the green alga Chlamydomonas reinhardtii and marine diatoms. We describe how the studies of light-driven processes are key to assessing functional biodiversity in evolutionary distant microalgae. We also emphasize that integration of laboratory and environmental studies, and dialogues between different scientific communities are both timely and essential to understand the life of phototrophs in complex ecosystems and to properly assess the consequences of environmental changes on aquatic environments globally.


Les microalgues, organismes aquatiques majeurs, sont responsables de la moitié de l'activité photosynthétique planétaire. La lumière représente pour les microalgues une source d'énergie ainsi que d'informations sur leur environnement. Ces 20 dernières années, les progrès en génomique et biologie des écosystèmes et la disponibilité de ressources génétiques pour de nouvelles espèces modèles ont permis d'apprécier leur importance dans les écosystèmes globaux. Néanmoins, du fait de leur grande diversité et de leur histoire évolutive complexe, notre compréhension de la biologie des microalgues reste limitée. Nous nous concentrons ici sur la photosynthèse, la photoperception, et la biogenèse des plastes chez l'algue verte Chlamydomonas reinhardtii et les diatomées marines. Nous décrivons comment l'étude des processus gouvernés par la lumière ouvre de nouvelles perspectives pour l'étude de la biodiversité fonctionnelle des microalgues. Nous soulignons combien seule l'intégration d'études en laboratoire et en contexte environnemental et le dialogue entre les communautés scientifiques concernées permettront de comprendre la vie de ces phototrophes dans des écosystèmes complexes, et d'évaluer correctement les conséquences des changements environnementaux sur les milieux aquatiques.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Ecosistema , Fotosíntesis , Biodiversidad , Chlamydomonas reinhardtii/genética
4.
Plant Cell ; 32(3): 547-572, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31852772

RESUMEN

Diatoms are the world's most diverse group of algae, comprising at least 100,000 species. Contributing ∼20% of annual global carbon fixation, they underpin major aquatic food webs and drive global biogeochemical cycles. Over the past two decades, Thalassiosira pseudonana and Phaeodactylum tricornutum have become the most important model systems for diatom molecular research, ranging from cell biology to ecophysiology, due to their rapid growth rates, small genomes, and the cumulative wealth of associated genetic resources. To explore the evolutionary divergence of diatoms, additional model species are emerging, such as Fragilariopsis cylindrus and Pseudo-nitzschia multistriata Here, we describe how functional genomics and reverse genetics have contributed to our understanding of this important class of microalgae in the context of evolution, cell biology, and metabolic adaptations. Our review will also highlight promising areas of investigation into the diversity of these photosynthetic organisms, including the discovery of new molecular pathways governing the life of secondary plastid-bearing organisms in aquatic environments.


Asunto(s)
Biodiversidad , Diatomeas/fisiología , Modelos Biológicos , Fitoplancton/fisiología , Diatomeas/genética , Genómica , Filogenia , Fitoplancton/genética
5.
Proc Natl Acad Sci U S A ; 116(26): 13137-13142, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31171659

RESUMEN

Periodic light-dark cycles govern the timing of basic biological processes in organisms inhabiting land as well as the sea, where life evolved. Although prominent marine phytoplanktonic organisms such as diatoms show robust diel rhythms, the mechanisms regulating these processes are still obscure. By characterizing a Phaeodactylum tricornutum bHLH-PAS nuclear protein, hereby named RITMO1, we shed light on the regulation of the daily life of diatoms. Alteration of RITMO1 expression levels and timing by ectopic overexpression results in lines with deregulated diurnal gene expression profiles compared with the wild-type cells. Reduced gene expression oscillations are also observed in these lines in continuous darkness, showing that the regulation of rhythmicity by RITMO1 is not directly dependent on light inputs. We also describe strong diurnal rhythms of cellular fluorescence in wild-type cells, which persist in continuous light conditions, indicating the existence of an endogenous circadian clock in diatoms. The altered rhythmicity observed in RITMO1 overexpression lines in continuous light supports the involvement of this protein in circadian rhythm regulation. Phylogenetic analysis reveals a wide distribution of RITMO1-like proteins in the genomes of diatoms as well as in other marine algae, which may indicate a common function in these phototrophs. This study adds elements to our understanding of diatom biology and offers perspectives to elucidate timekeeping mechanisms in marine organisms belonging to a major, but under-investigated, branch of the tree of life.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ritmo Circadiano/genética , Diatomeas/fisiología , Fotoperiodo , Fitoplancton/fisiología , Regulación de la Expresión Génica/fisiología , Océanos y Mares , Filogenia , Agua de Mar/microbiología , Transcriptoma
6.
Plant Physiol ; 177(3): 953-965, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29773581

RESUMEN

Marine diatoms are prominent phytoplankton organisms that perform photosynthesis in extremely variable environments. Diatoms possess a strong ability to dissipate excess absorbed energy as heat via nonphotochemical quenching (NPQ). This process relies on changes in carotenoid pigment composition (xanthophyll cycle) and on specific members of the light-harvesting complex family specialized in photoprotection (LHCXs), which potentially act as NPQ effectors. However, the link between light stress, NPQ, and the existence of different LHCX isoforms is not understood in these organisms. Using picosecond fluorescence analysis, we observed two types of NPQ in the pennate diatom Phaeodactylum tricornutum that were dependent on light conditions. Short exposure of low-light-acclimated cells to high light triggers the onset of energy quenching close to the core of photosystem II, while prolonged light stress activates NPQ in the antenna. Biochemical analysis indicated a link between the changes in the NPQ site/mechanism and the induction of different LHCX isoforms, which accumulate either in the antenna complexes or in the core complex. By comparing the responses of wild-type cells and transgenic lines with a reduced expression of the major LHCX isoform, LHCX1, we conclude that core complex-associated NPQ is more effective in photoprotection than is the antenna complex. Overall, our data clarify the complex molecular scenario of light responses in diatoms and provide a rationale for the existence of a degenerate family of LHCX proteins in these algae.


Asunto(s)
Diatomeas/fisiología , Complejos de Proteína Captadores de Luz/metabolismo , Aclimatación , Clorofila/metabolismo , Cloroplastos/metabolismo , Diatomeas/citología , Fluorescencia , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Luz , Complejos de Proteína Captadores de Luz/genética , Organismos Modificados Genéticamente , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
7.
Curr Opin Plant Biol ; 37: 70-77, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28456112

RESUMEN

Marine eukaryotic phytoplankton are major contributors to global primary production. To adapt and thrive in the oceans, phytoplankton relies on a variety of light-regulated responses and light-acclimation capacities probably driven by sophisticated photoregulatory mechanisms. A plethora of photoreceptor-like sequences from marine microalgae have been identified in omics approaches. Initial studies have revealed that some algal photoreceptors are similar to those known in plants. In addition, new variants with different spectral tuning and algal-specific light sensors have also been found, changing current views and perspectives on how photoreceptor structure and function have diversified in phototrophs experiencing different environmental conditions.


Asunto(s)
Luz , Microalgas/metabolismo , Microalgas/efectos de la radiación , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Phys Rev E ; 94(2-1): 022418, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27627344

RESUMEN

Chain formation in diatoms is relevant because of several aspects of their adaptation to the ecosystem. However, the tools to quantify the regulation of their assemblage and infer specific mechanisms in a laboratory setting are scarce. To address this problem, we define an approach based on a statistical physics model of chain growth and separation in combination with experimental evaluation of chain-length distributions. Applying this combined analysis to data from Chaetoceros decipiens and Phaeodactylum tricornutum, we find that cells of the first species control chain separation, likely through a cell-to-cell communication process, while the second species only modulates the separation rate. These results promote quantitative methods for characterizing chain formation in several chain-forming species and in diatoms in particular.


Asunto(s)
Diatomeas/crecimiento & desarrollo , Modelos Biológicos , Diatomeas/citología
9.
J Exp Bot ; 67(13): 3939-51, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27225826

RESUMEN

Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemical quenching (NPQ). In this study, we investigate the role of the other members of the LHCX family in diatom stress responses. Our analysis of available genomic data shows that the presence of multiple LHCX genes is a conserved feature of diatom species living in different ecological niches. Moreover, an analysis of the levels of four P. tricornutum LHCX transcripts in relation to protein expression and photosynthetic activity indicates that LHCXs are differentially regulated under different light intensities and nutrient starvation, mostly modulating NPQ capacity. We conclude that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection. Moreover, our data indicate that the expansion of the LHCX gene family reflects functional diversification of its members which could benefit cells responding to highly variable ocean environments.


Asunto(s)
Proteínas Algáceas/genética , Diatomeas/genética , Regulación de la Expresión Génica , Complejos de Proteína Captadores de Luz/genética , Fitoplancton/genética , Transducción de Señal , Proteínas Algáceas/metabolismo , Diatomeas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Fitoplancton/metabolismo
10.
Plant Cell ; 28(3): 616-28, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26941092

RESUMEN

The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum, and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs.


Asunto(s)
Diatomeas/fisiología , Fototransducción/efectos de la radiación , Fitocromo/efectos de la radiación , Plantas/efectos de la radiación , Adaptación Fisiológica , Clorofila/metabolismo , Diatomeas/efectos de la radiación , Océanos y Mares , Espectrometría Raman , Luz Solar
11.
Planta ; 243(4): 909-23, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26721646

RESUMEN

MAIN CONCLUSION: Arabidopsis PHS1, initially known as an actor of cytoskeleton organization, is a positive regulator of flowering in the photoperiodic and autonomous pathways by modulating both CO and FLC mRNA levels. Protein phosphorylation and dephosphorylation is a major type of post-translational modification, controlling many biological processes. In Arabidopsis thaliana, five genes encoding MAPK phosphatases (MKP)-like proteins have been identified. Among them, PROPYZAMIDE HYPERSENSITIVE 1 (PHS1) encoding a dual-specificity protein tyrosine phosphatase (DsPTP) has been shown to be involved in microtubule organization, germination and ABA-regulated stomatal opening. Here, we demonstrate that PHS1 also regulates flowering under long-day and short-day conditions. Using physiological, genetic and molecular approaches, we have shown that the late flowering phenotype of the knock-out phs1-5 mutant is linked to a higher expression of FLOWERING LOCUS C (FLC). In contrast, a decline of both CONSTANS (CO) and FLOWERING LOCUS T (FT) expression is observed in the knock-out phs1-5 mutant, especially at the end of the light period under long-day conditions when the induction of flowering occurs. We show that this partial loss of sensitivity to photoperiodic induction is independent of FLC. Our results thus indicate that PHS1 plays a dual role in flowering, in the photoperiodic and autonomous pathways, by modulating both CO and FLC mRNA levels. Our work reveals a novel actor in the complex network of the flowering regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Mutación , Fotoperiodo , Plantas Modificadas Genéticamente , Proteínas Tirosina Fosfatasas/genética , Procesamiento Postranscripcional del ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Plant Physiol ; 172: 42-54, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25087009

RESUMEN

Light is essential for the life of photosynthetic organisms as it is a source of energy and information from the environment. Light excess or limitation can be a cause of stress however. Photosynthetic organisms exhibit sophisticated mechanisms to adjust their physiology and growth to the local environmental light conditions. The cryptochrome/photolyase family (CPF) is composed of flavoproteins with similar structures that display a variety of light-dependent functions. This family encompasses photolyases, blue-light activated enzymes that repair ultraviolet-light induced DNA damage, and cryptochromes, known for their photoreceptor functions in terrestrial plants. For this review, we searched extensively for CPFs in the available genome databases to trace the distribution and evolution of this protein family in photosynthetic organisms. By merging molecular data with current knowledge from the functional characterization of CPFs from terrestrial and aquatic organisms, we discuss their roles in (i) photoperception, (ii) biological rhythm regulation and (iii) light-induced stress responses. We also explore their possible implication in light-related physiological acclimation and their distribution in phototrophs living in different environments. The outcome of this structure-function analysis reconstructs the complex scenarios in which CPFs have evolved, as highlighted by the novel functions and biochemical properties of the most recently described family members in algae.


Asunto(s)
Desoxirribodipirimidina Fotoliasa/genética , Evolución Molecular , Flavoproteínas/genética , Fenómenos Fisiológicos de las Plantas , Criptocromos/genética , Criptocromos/metabolismo , Desoxirribodipirimidina Fotoliasa/metabolismo , Flavoproteínas/metabolismo , Luz , Fotosíntesis
13.
FEBS Lett ; 589(2): 189-92, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25500270

RESUMEN

Even though the plant photoreceptors cryptochromes were discovered more than 20 years ago, the mechanism through which they transduce light signals to their partner molecules such as COP1 (Constitutive Photomorphogenic 1) or SPA1 (Suppressor of Phytochrome A) still remains to be established. We propose that a negative charge induced by light in the vicinity of the flavin chromophore initiates cryptochrome 1 signalling. This negative charge might expel the protein-bound ATP from the binding pocket, thereby pushing off the C-terminus that covers the ATP pocket in the dark state of the protein. This conformational change should allow for phosphorylation of previously inaccessible amino acids. A partially phosphorylated 'ESSSSGRR-VPE' fragment of the C-terminus could mimic the sequence of the transcription factor HY5 that is essential for binding to the negative regulator of photomorphogenesis COP1. HY5 release through competition for the COP1 binding site could represent the long-sought connection between light activation of cryptochrome and modulation of photomorphogenesis.


Asunto(s)
Criptocromos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Proteínas de Plantas/química , Plantas/química , Unión Proteica , Factores de Transcripción/metabolismo
14.
Sci Rep ; 4: 5175, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24898692

RESUMEN

Cryptochromes are flavoproteins that drive diverse developmental light-responses in plants and participate in the circadian clock in animals. Plant cryptochromes have found application as photoswitches in optogenetics. We have studied effects of pH and ATP on the functionally relevant photoreduction of the oxidized FAD cofactor to the semi-reduced FADH(·) radical in isolated Arabidopsis cryptochrome 1 by transient absorption spectroscopy on nanosecond to millisecond timescales. In the absence of ATP, the yield of light-induced radicals strongly decreased with increasing pH from 6.5 to 8.5. With ATP present, these yields were significantly higher and virtually pH-independent up to pH 9. Analysis of our data in light of the crystallographic structure suggests that ATP-binding shifts the pKa of aspartic acid D396, the putative proton donor to FAD·(-), from ~7.4 to >9, and favours a reaction pathway yielding long-lived aspartate D396(-). Its negative charge could trigger conformational changes necessary for signal transduction.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Criptocromos/metabolismo , Luz , Algoritmos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Criptocromos/química , Criptocromos/efectos de la radiación , Oxidación-Reducción , Conformación Proteica , Teoría Cuántica , Transducción de Señal/efectos de la radiación , Espectrofotometría Ultravioleta
16.
FEBS Lett ; 583(9): 1427-33, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19327354

RESUMEN

Cryptochromes are widely distributed blue light photoreceptors involved in numerous signaling functions in plants and animals. Both plant and animal-type cryptochromes are found to bind ATP and display intrinsic autokinase activity; however the functional significance of this activity remains a matter of speculation. Here we show in purified preparations of Arabidopsis cry1 that ATP binding induces conformational change independently of light and increases the amount and stability of light-induced flavin radical formation. Nucleotide binding may thereby provide a mechanism whereby light responsivity in organisms can be regulated through modulation of cryptochrome photoreceptor conformation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Flavoproteínas/metabolismo , Proteínas de Arabidopsis , Criptocromos , Flavoproteínas/química , Flavoproteínas/aislamiento & purificación , Flavoproteínas/fisiología , Hidrólisis , Oxidación-Reducción , Fotoquímica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Tripsina/metabolismo
17.
Plant J ; 59(2): 316-28, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19302419

RESUMEN

The proteins kinases SNF1/AMPK/SnRK1 are a subfamily of serine/threonine kinases that act as metabolite sensors to constantly adapt metabolism to the supply of, and demand for, energy. In the yeast Saccharomyces cerevisiae, the SNF1 complex is a central component of the regulatory response to glucose starvation. AMP activated protein kinase (AMPK) the mammalian homologue of SNF1, plays a central role in the regulation of energy homeostasis at the cellular as well as the whole-body levels. In Arabidopsis thaliana, SnRK1.1 and SnRK1.2 have recently been described as central integrators of a transcription network for stress and energy signalling. In this study, biochemical analysis established SnRK1.1 as the major SnRK1 isoform both in isolated cells and leaves. In order to elucidate the function of SnRK1.1 in Arabidopsis thaliana, transgenic plants over-expressing SnRK1.1 were produced. Genetic, biochemical, physiological and molecular analyses of these plants revealed that SnRK1.1 is implicated in sugar and ABA signalling pathways. Modifications of the starch and soluble sugar content were observed in the 35S:SnRK1.1 transgenic lines. Our studies also revealed modifications of the activity of essential enzymes such as nitrate reductase or ADP-glucose pyrophosphorylase, and of the expression of several sugar-regulated genes, confirming the central role of the protein kinase SnRK1 in the regulation of metabolism.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Metabolismo de los Hidratos de Carbono , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
18.
PLoS Biol ; 6(7): e160, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18597555

RESUMEN

Cryptochromes are a class of flavoprotein blue-light signaling receptors found in plants, animals, and humans that control plant development and the entrainment of circadian rhythms. In plant cryptochromes, light activation is proposed to result from photoreduction of a protein-bound flavin chromophore through intramolecular electron transfer. However, although similar in structure to plant cryptochromes, the light-response mechanism of animal cryptochromes remains entirely unknown. To complicate matters further, there is currently a debate on whether mammalian cryptochromes respond to light at all or are instead activated by non-light-dependent mechanisms. To resolve these questions, we have expressed both human and Drosophila cryptochrome proteins to high levels in living Sf21 insect cells using a baculovirus-derived expression system. Intact cells are irradiated with blue light, and the resulting cryptochrome photoconversion is monitored by fluorescence and electron paramagnetic resonance spectroscopic techniques. We demonstrate that light induces a change in the redox state of flavin bound to the receptor in both human and Drosophila cryptochromes. Photoreduction from oxidized flavin and subsequent accumulation of a semiquinone intermediate signaling state occurs by a conserved mechanism that has been previously identified for plant cryptochromes. These results provide the first evidence of how animal-type cryptochromes are activated by light in living cells. Furthermore, human cryptochrome is also shown to undergo this light response. Therefore, human cryptochromes in exposed peripheral and/or visual tissues may have novel light-sensing roles that remain to be elucidated.


Asunto(s)
Proteínas del Ojo/metabolismo , Flavinas/metabolismo , Flavoproteínas/metabolismo , Fototransducción , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Animales , Relojes Biológicos/fisiología , Línea Celular , Criptocromos , Drosophila melanogaster , Espectroscopía de Resonancia por Spin del Electrón , Proteínas del Ojo/efectos de la radiación , Flavinas/efectos de la radiación , Flavoproteínas/efectos de la radiación , Expresión Génica , Humanos , Organismos Modificados Genéticamente , Oxidación-Reducción , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Spodoptera , Rayos Ultravioleta
19.
Mol Plant ; 1(1): 68-74, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20031915

RESUMEN

Arabidopsis cryptochromes cry1 and cry2 are blue-light signalling molecules with significant structural similarity to photolyases--a class of blue-light-sensing DNA repair enzymes. Like photolyases, purified plant cryptochromes have been shown to bind both flavin and pterin chromophores. The flavin functions as a light sensor and undergoes reduction in response to blue light that initiates the signalling cascade. However, the role of the pterin in plant cryptochromes has until now been unknown. Here, we show that the action spectrum for light-dependent degradation of cry2 has a significant peak of activity at 380 nm, consistent with absorption by a pterin cofactor. We further show that cry1 protein expressed in living insect cells responds with greater sensitivity to 380 nm light than to 450 nm, consistent with a light-harvesting antenna pigment that transfers excitation energy to the oxidized flavin of cry1. The pterin biosynthesis inhibitor DHAP selectively reduces cryptochrome responsivity at 380 nm but not 450 nm blue light in these cell cultures, indicating that the antenna pigment is a folate cofactor similar to that of photolyases.


Asunto(s)
Arabidopsis/fisiología , Criptocromos/fisiología , Ácido Fólico/fisiología , Luz , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/fisiología , Proteínas de Arabidopsis/efectos de la radiación , Criptocromos/química , Criptocromos/efectos de los fármacos , Criptocromos/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Flavinas/fisiología , Flavinas/efectos de la radiación , Fluorescencia , Gliceraldehído 3-Fosfato/análogos & derivados , Gliceraldehído 3-Fosfato/farmacología , Compuestos Organofosforados/farmacología , Plantones/fisiología , Plantones/efectos de la radiación , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación , Espectrofotometría , Espectrofotometría Ultravioleta
20.
J Biol Chem ; 282(13): 9383-9391, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17237227

RESUMEN

Cryptochromes are blue light-sensing photoreceptors found in plants, animals, and humans. They are known to play key roles in the regulation of the circadian clock and in development. However, despite striking structural similarities to photolyase DNA repair enzymes, cryptochromes do not repair double-stranded DNA, and their mechanism of action is unknown. Recently, a blue light-dependent intramolecular electron transfer to the excited state flavin was characterized and proposed as the primary mechanism of light activation. The resulting formation of a stable neutral flavin semiquinone intermediate enables the photoreceptor to absorb green/yellow light (500-630 nm) in addition to blue light in vitro. Here, we demonstrate that Arabidopsis cryptochrome activation by blue light can be inhibited by green light in vivo consistent with a change of the cofactor redox state. We further characterize light-dependent changes in the cryptochrome1 (cry1) protein in living cells, which match photoreduction of the purified cry1 in vitro. These experiments were performed using fluorescence absorption/emission and EPR on whole cells and thereby represent one of the few examples of the active state of a known photoreceptor being monitored in vivo. These results indicate that cry1 activation via blue light initiates formation of a flavosemiquinone signaling state that can be converted by green light to an inactive form. In summary, cryptochrome activation via flavin photoreduction is a reversible mechanism novel to blue light photoreceptors. This photocycle may have adaptive significance for sensing the quality of the light environment in multiple organisms.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Flavinas/metabolismo , Flavoproteínas/metabolismo , Células Fotorreceptoras/metabolismo , Rayos Ultravioleta , Arabidopsis/química , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/efectos de la radiación , Relojes Biológicos/fisiología , Relojes Biológicos/efectos de la radiación , Criptocromos , Flavinas/química , Flavinas/efectos de la radiación , Flavoproteínas/química , Flavoproteínas/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , Células Fotorreceptoras/química , Células Fotorreceptoras/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...