Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Res Sq ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38659828

RESUMEN

Lung cancer is one of the most common types of cancer worldwide. Non-small cell lung cancer (NSCLC), typically caused by KRAS and TP53 driver mutations, represents the majority of all new lung cancer diagnoses. Overexpression of the RNA-binding protein (RBP) Musashi-2 (MSI2) has been associated with NSCLC progression. To investigate the role of MSI2 in NSCLC development, we compared the tumorigenesis in mice with lung-specific Kras-activating mutation and Trp53 deletion, with and without Msi2 deletion (KPM2 versus KP mice). KPM2 mice showed decreased lung tumorigenesis in comparison with KP mice. In addition, KPM2 lung tumors showed evidence of decreased proliferation, but increased DNA damage, marked by increased levels of phH2AX (S139) and phCHK1 (S345), but decreased total and activated ATM. Using cell lines from KP and KPM2 tumors, and human NSCLC cell lines, we found that MSI2 directly binds ATM mRNA and regulates its translation. MSI2 depletion impaired DNA damage response (DDR) signaling and sensitized human and murine NSCLC cells to treatment with PARP inhibitors in vitro and in vivo. Taken together, we conclude that MSI2 supports NSCLC tumorigenesis, in part, by supporting repair of DNA damage by controlling expression of DDR proteins. These results suggest that targeting MSI2 may be a promising strategy for lung cancers treated with DNA-damaging agents.

2.
Cancers (Basel) ; 16(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38539515

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) ranks among the most prevalent global cancers. Despite advancements in treatments, the five-year survival rate remains at approximately 66%. The histone methyltransferase NSD1, known for its role in catalyzing histone H3 lysine 36 di-methylation (H3K36me2), emerges as a potential oncogenic factor in HNSCC. Our study, employing Reverse Phase Protein Array (RPPA) analysis and subsequent validation, reveals that PIP4K2B is a key downstream target of NSD1. Notably, PIP4K2B depletion in HNSCC induces downregulation of the mTOR pathway, resulting in diminished cell growth in vitro. Our investigation highlights a direct, positive regulatory role of NSD1 on PIP4K2B gene transcription through an H3K36me2-dependent mechanism. Importantly, the impact of PIP4K2B appears to be context-dependent, with overexpression rescuing cell growth in laryngeal HNSCC cells but not in tongue/hypopharynx cells. In conclusion, our findings implicate PIP4K2B as a novel NSD1-dependent protein in HNSCC, suggesting its potential significance for laryngeal cancer cell survival. This insight contributes to our understanding of the molecular landscape in HNSCC and establishes PIP4KB as a promising target for drug development.

3.
Cell Death Discov ; 10(1): 75, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38346948

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Despite advances in therapeutic management and immunotherapy, the 5-year survival rate for head and neck cancer remains at ~66% of all diagnosed cases. A better definition of drivers of HPV-negative HNSCC that are targetable points of tumor vulnerability could lead to significant clinical advances. NSD1 is a histone methyltransferase that catalyzes histone H3 lysine 36 di-methylation (H3K36me2); mutations inactivating NSD1 have been linked to improved outcomes in HNSCC. In this study, we show that NSD1 induces H3K36me2 levels in HNSCC and that the depletion of NSD1 reduces HNSCC of cell growth in vitro and in vivo. We also find that NSD1 strongly promotes activation of the Akt/mTORC1 signaling pathway. NSD1 depletion in HNSCC induces an autophagic gene program activation, causes accumulation of the p62 and LC3B-II proteins, and decreases the autophagic signaling protein ULK1 at both protein and mRNA levels. Reflecting these signaling defects, the knockdown of NSD1 disrupts autophagic flux in HNSCC cells. Taken together, these data identify positive regulation of Akt/mTORC1 signaling and autophagy as novel NSD1 functions in HNSCC, suggesting that NSD1 may be of value as a therapeutic target in this cancer.

4.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37786686

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Despite advances in therapeutic management and immunotherapy, the five-year survival rate for head and neck cancer remains at ~66% of all diagnosed cases. A better definition of drivers of HPV-negative HNSCC that are targetable points of tumor vulnerability could lead to significant clinical advances. NSD1 is a histone methyltransferase which catalyzes histone H3 lysine 36 di-methylation (H3K36me2); mutations inactivating NSD1 have been linked to improved outcomes in HNSCC. In this study, we show that NSD1 induces H3K36me2 levels in HNSCC, and that the depletion of NSD1 reduces HNSCC of cell growth in vitro and in vivo. We also find that NSD1 strongly promotes activation of the Akt/mTORC1 signaling pathway. NSD1 depletion in HNSCC induces an autophagic gene program activation, causes accumulation of the p62 and LC3B-II proteins, and decreases the autophagic signaling protein ULK1 at both protein and mRNA levels. Reflecting these signaling defects, knockdown of NSD1 disrupts autophagic flux in HNSCC cells. Taken together, these data identify positive regulation of Akt/mTORC1 signaling and autophagy as novel NSD1 functions in HNSCC, suggesting that NSD1 may be of value as a therapeutic target in this cancer.

5.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398283

RESUMEN

Lung cancer is one of the most common types of cancers worldwide. Non-small cell lung cancer (NSCLC), typically caused by KRAS and TP53 driver mutations, represents the majority of all new lung cancer diagnoses. Overexpression of the RNA-binding protein (RBP) Musashi-2 (MSI2) has been associated with NSCLC progression. To investigate the role of MSI2 in NSCLC development, we compared the tumorigenesis in mice with lung-specific Kras -activating mutation and Trp53 deletion, with and without Msi2 deletion (KP versus KPM2 mice). KPM2 mice showed decreased lung tumorigenesis in comparison with KP mice what supports published data. In addition, using cell lines from KP and KPM2 tumors, and human NSCLC cell lines, we found that MSI2 directly binds ATM/Atm mRNA and regulates its translation. MSI2 depletion impaired DNA damage response (DDR) signaling and sensitized human and murine NSCLC cells to treatment with PARP inhibitors in vitro and in vivo . Taken together, we conclude that MSI2 supports lung tumorigenesis, in part, by direct positive regulation of ATM protein expression and DDR. This adds the knowledge of MSI2 function in lung cancer development. Targeting MSI2 may be a promising strategy to treat lung cancer. Significance: This study shows the novel role of Musashi-2 as regulator of ATM expression and DDR in lung cancer.

6.
Cancers (Basel) ; 15(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37173995

RESUMEN

Lung cancer is the most frequently diagnosed cancer type and the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) represents most of the diagnoses of lung cancer. Vascular endothelial growth factor receptor-2 (VEGFR2) is a member of the VEGF family of receptor tyrosine kinase proteins, which are expressed on both endothelial and tumor cells, are one of the key proteins contributing to cancer development, and are involved in drug resistance. We previously showed that Musashi-2 (MSI2) RNA-binding protein is associated with NSCLC progression by regulating several signaling pathways relevant to NSCLC. In this study, we performed Reverse Protein Phase Array (RPPA) analysis of murine lung cancer, which suggests that VEGFR2 protein is strongly positively regulated by MSI2. Next, we validated VEGFR2 protein regulation by MSI2 in several human lung adenocarcinoma cell line models. Additionally, we found that MSI2 affected AKT signaling via negative PTEN mRNA translation regulation. In silico prediction analysis suggested that both VEGFR2 and PTEN mRNAs have predicted binding sites for MSI2. We next performed RNA immunoprecipitation coupled with quantitative PCR, which confirmed that MSI2 directly binds to VEGFR2 and PTEN mRNAs, suggesting a direct regulation mechanism. Finally, MSI2 expression positively correlated with VEGFR2 and VEGF-A protein levels in human lung adenocarcinoma samples. We conclude that the MSI2/VEGFR2 axis contributes to lung adenocarcinoma progression and is worth further investigations and therapeutic targeting.

7.
bioRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034813

RESUMEN

Lung cancer is the most frequently diagnosed cancer type and the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) represents most of the lung cancer. Vascular endothelial growth factor receptor-2 (VEGFR2) is a member of the VEGF family of receptor tyrosine kinase proteins, expressed on both endothelial and tumor cells which is one of the key proteins contributing to cancer development and involved in drug resistance. We previously showed that Musashi-2 (MSI2) RNA-binding protein is associated with NSCLC progression by regulating several signaling pathways relevant to NSCLC. In this study, we performed Reverse Protein Phase Array (RPPA) analysis of murine lung cancer which nominated VEGFR2 protein as strongly positively regulated by MSI2. Next, we validated VEGFR2 protein regulation by MSI2 in several human NSCLC cell line models. Additionally, we found that MSI2 affected AKT signaling via negative PTEN mRNA translation regulation. In silico prediction analysis suggested that both VEGFR2 and PTEN mRNAs have predicted binding sites for MSI2. We next performed RNA immunoprecipitation coupled with quantitative PCR which confirmed that MSI2 directly binds to VEGFR2 and PTEN mRNAs, suggesting direct regulation mechanism. Finally, MSI2 expression positively correlated with VEGFR2 and VEGF-A protein levels in human NSCLC samples. We conclude that MSI2/VEGFR2 axis contributes to NSCLC progression and is worth further investigations and therapeutic targeting.

8.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36711508

RESUMEN

RNA-binding proteins (RBPs) are key post-transcriptional regulators of gene expression, and thus underlie many important biological processes. Here, we developed a strategy that entails extracting a "hotspot pharmacophore" from the structure of a protein-RNA complex, to create a template for designing small-molecule inhibitors and for exploring the selectivity of the resulting inhibitors. We demonstrate this approach by designing inhibitors of Musashi proteins MSI1 and MSI2, key regulators of mRNA stability and translation that are upregulated in many cancers. We report this novel series of MSI1/MSI2 inhibitors is specific and active in biochemical, biophysical, and cellular assays. This study extends the paradigm of "hotspots" from protein-protein complexes to protein-RNA complexes, supports the "druggability" of RNA-binding protein surfaces, and represents one of the first rationally-designed inhibitors of non-enzymatic RNA-binding proteins. Owing to its simplicity and generality, we anticipate that this approach may also be used to develop inhibitors of many other RNA-binding proteins; we also consider the prospects of identifying potential off-target interactions by searching for other RBPs that recognize their cognate RNAs using similar interaction geometries. Beyond inhibitors, we also expect that compounds designed using this approach can serve as warheads for new PROTACs that selectively degrade RNA-binding proteins.

9.
Res Sq ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36711552

RESUMEN

RNA-binding proteins (RBPs) are key post-transcriptional regulators of gene expression, and thus underlie many important biological processes. Here, we developed a strategy that entails extracting a "hotspot pharmacophore" from the structure of a protein-RNA complex, to create a template for designing small-molecule inhibitors and for exploring the selectivity of the resulting inhibitors. We demonstrate this approach by designing inhibitors of Musashi proteins MSI1 and MSI2, key regulators of mRNA stability and translation that are upregulated in many cancers. We report this novel series of MSI1/MSI2 inhibitors is specific and active in biochemical, biophysical, and cellular assays. This study extends the paradigm of "hotspots" from protein-protein complexes to protein-RNA complexes, supports the "druggability" of RNA-binding protein surfaces, and represents one of the first rationally-designed inhibitors of non-enzymatic RNA-binding proteins. Owing to its simplicity and generality, we anticipate that this approach may also be used to develop inhibitors of many other RNA-binding proteins; we also consider the prospects of identifying potential off-target interactions by searching for other RBPs that recognize their cognate RNAs using similar interaction geometries. Beyond inhibitors, we also expect that compounds designed using this approach can serve as warheads for new PROTACs that selectively degrade RNA-binding proteins.

10.
Cancers (Basel) ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36358724

RESUMEN

Lung cancer remains the second most commonly diagnosed cancer worldwide and the leading cause of cancer-related mortality. The mapping of genomic alterations and their role in lung-cancer progression has been followed by the development of new therapeutic options. Several novel drugs, such as targeted therapy and immunotherapy, have significantly improved outcomes. However, many patients with lung cancer do not benefit from existing therapies or develop progressive disease, leading to increased morbidity and mortality despite initial responses to treatment. Alterations in DNA-damage repair (DDR) genes represent a cancer hallmark that impairs a cell's ability to prevent deleterious mutation accumulation and repair. These alterations have recently emerged as a therapeutic target in breast, ovarian, prostate, and pancreatic cancers. The role of DDR alterations remains largely unknown in lung cancer. Nevertheless, recent research efforts have highlighted a potential role of some DDR alterations as predictive biomarkers of response to treatment. Despite the failure of PARP inhibitors (main class of DDR targeting agents) to improve outcomes in lung cancer patients, there is some evidence suggesting a role of PARP inhibitors and other DDR targeting agents in benefiting a distinct subset of lung cancer patients. In this review, we will discuss the existing literature on DDR alterations and homologous recombination deficiency (HRD) state as predictive biomarkers and therapeutic targets in both non-small cell lung and small cell lung cancer.

11.
Cell Mol Life Sci ; 79(6): 285, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35532818

RESUMEN

NSD1, NSD2, and NSD3 constitute the nuclear receptor-binding SET Domain (NSD) family of histone 3 lysine 36 (H3K36) methyltransferases. These structurally similar enzymes mono- and di-methylate H3K36, which contribute to the maintenance of chromatin integrity and regulate the expression of genes that control cell division, apoptosis, DNA repair, and epithelial-mesenchymal transition (EMT). Aberrant expression or mutation of members of the NSD family is associated with developmental defects and the occurrence of some types of cancer. In this review, we discuss the effect of alterations in NSDs on cancer patient's prognosis and response to treatment. We summarize the current understanding of the biological functions of NSD proteins, focusing on their activities and the role in the formation and progression in solid tumors biology, as well as how it depends on tumor etiologies. This review also discusses ongoing efforts to develop NSD inhibitors as a promising new class of cancer therapeutic agents.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Neoplasias , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo
12.
Int J Oncol ; 60(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35445737

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor and is associated with a poor clinical prognosis. Despite the progress in the understanding of the molecular and genetic changes that promote tumorigenesis, effective treatment options are limited. The present review intended to identify and summarize major signaling pathways and genetic abnormalities involved in the pathogenesis of GBM, as well as therapies that target these pathways. Glioblastoma remains a difficult to treat tumor; however, in the last two decades, significant improvements in the understanding of GBM biology have enabled advances in available therapeutics. Significant genomic events and signaling pathway disruptions (NF­κB, Wnt, PI3K/AKT/mTOR) involved in the formation of GBM were discussed. Current therapeutic options may only marginally prolong survival and the current standard of therapy cures only a small fraction of patients. As a result, there is an unmet requirement for further study into the processes of glioblastoma pathogenesis and the discovery of novel therapeutic targets in novel signaling pathways implicated in the evolution of glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/terapia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Resultado del Tratamiento
13.
Cancers (Basel) ; 13(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202748

RESUMEN

Epidermal growth factor receptor-targeting tyrosine kinase inhibitors (EGFR TKIs) are the standard of care for patients with EGFR-mutated metastatic lung cancer. While EGFR TKIs have initially high response rates, inherent and acquired resistance constitute a major challenge to the longitudinal treatment. Ongoing work is aimed at understanding the molecular basis of these resistance mechanisms, with exciting new studies evaluating novel agents and combination therapies to improve control of tumors with all forms of EGFR mutation. In this review, we first provide a discussion of EGFR-mutated lung cancer and the efficacy of available EGFR TKIs in the clinical setting against both common and rare EGFR mutations. Second, we discuss common resistance mechanisms that lead to therapy failure during treatment with EGFR TKIs. Third, we review novel approaches aimed at improving outcomes and overcoming resistance to EGFR TKIs. Finally, we highlight recent breakthroughs in the use of EGFR TKIs in non-metastatic EGFR-mutated lung cancer.

14.
PLoS One ; 16(7): e0252132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34237057

RESUMEN

BACKGROUND: The RNA-binding protein Musashi-2 (MSI2) controls the translation of proteins that support stem cell identity and lineage determination and is associated with progression in some cancers. We assessed MSI2 as potential clinical biomarker in colorectal cancer (CRC) and tubulovillous adenoma (TA) of colon mucosa. METHODS: We assessed 125 patients, of whom 20 had polyps of the colon (TAs), and 105 had CRC. Among 105 patients with CRC, 45 had stages I-III; among metastatic CRC (mCRC) patients, 31 had synchronous and 29 metachronous liver metastases. We used immunohistochemistry to measure MSI2 expression in matching specimens of normal tissue versus TAs, primary CRC tumors, and metastases, correlating expression to clinical outcomes. We analyzed the biological effects of depleting MSI2 expression in human CRC cells. RESULTS: MSI2 expression was significantly elevated in polyps versus primary tissue, and further significantly elevated in primary tumors and metastases. MSI2 expression correlated with decreased progression free survival (PFS) and overall survival (OS), higher tumor grade, and right-side localization (p = 0.004) of tumors. In metastases, high MSI2 expression correlated with E-cadherin expression. Knockdown of MSI2 in CRC cells suppressed proliferation, survival and clonogenic capacity, and decreased expression of TGFß1, E-cadherin, and ZO1. CONCLUSION: Elevated expression of MSI2 is associated with pre-cancerous TAs in the colonic mucosa, suggesting it is an early event in transformation. MSI2 expression is further elevated during CRC progression, and associated with poor prognosis. Depletion of MSI2 reduces CRC cell growth. These data imply a causative role of MSI2 overexpression at multiple stages of CRC formation and progression.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Pólipos/diagnóstico , Pólipos/genética , Proteínas de Unión al ARN/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
15.
RSC Adv ; 11(8): 4555-4571, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996031

RESUMEN

Tropolones are promising organic compounds that can have important biologic effects. We developed a series of new 2-quinolyl-1,3-tropolones derivatives that were prepared by the acid-catalyzed reaction of 4,7-dichloro-2-methylquinolines with 1,2-benzoquinones. 2-Quinolyl-1,3-tropolones have been synthesized and tested for their anti-proliferative activity against several human cancer cell lines. Two compounds (3d and mixture B of 3i-k) showed excellent activity against six cancer cell lines of different tissue of origin. The promising compounds 3d and mixture B of 3i-k also demonstrated induction of apoptotic cell death of ovarian cancer (OVCAR-3, OVCAR-8) and colon cancer (HCT 116) cell lines and affected ERK signaling. In summary, 2-quinolyl-1,3-tropolones are promising compounds for development of effective anticancer agents.

16.
J Thorac Dis ; 13(3): 1370-1379, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33841930

RESUMEN

BACKGROUND: Musashi-2 (MSI2) is a member of RNA-binding protein family that regulates mRNA translation of numerous intracellular targets and influences maintenance of stem cell identity. This study assessed MSI2 as a potential clinical biomarker in non-small cell lung cancer (NSCLC). METHODS: The current study included 40 patients with NSCLC, of whom one presented with stage 1, 14 presented with stage II, 15 presented with stage III, and 10 patients had stage IV. All patients received standard of care treatments. All patient samples were obtained before treatment started. We used immunohistochemical (IHC) approach to measure MSI2 protein expression in matching specimens of normal lung versus tumor tissues, and primary versus metastatic tumors, followed by correlative analysis in relation to clinical outcomes. In parallel, clinical correlative analysis of MSI2 mRNA expression was performed in silico using publicly available datasets (TCGA/ICGC and KM plots). RESULTS: MSI2 protein expression in patient samples was significantly elevated in NSCLC primary tumors versus normal lung tissue (P=0.03). MSI2 elevated expression positively correlated with a decreased progression free survival (PFS) (P=0.026) combined for all stages and with overall survival (OS) at stage IV (P=0.013). Elevated MSI2 expression on RNA level was confirmed in primary tumor versus normal tissue samples in TCGA dataset (P<0.0001), and positively correlated with decreased OS (P=0.02). No correlation was observed between MSI2 expression and age, sex, smoking, and treatment type. CONCLUSIONS: Elevated MSI2 expression in primary NSCLC tumors is associated with poor prognosis and can be used as a novel potential prognostic biomarker in NSCLC patients. Future studies in an extended patient cohort are warranted.

17.
Oncogenesis ; 10(3): 29, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723247

RESUMEN

Non-small cell lung cancer (NSCLC) has limited treatment options. Expression of the RNA-binding protein (RBP) Musashi-2 (MSI2) is elevated in a subset of non-small cell lung cancer (NSCLC) tumors upon progression, and drives NSCLC metastasis. We evaluated the mechanism of MSI2 action in NSCLC to gain therapeutically useful insights. Reverse phase protein array (RPPA) analysis of MSI2-depleted versus control KrasLA1/+; Trp53R172HΔG/+ NSCLC cell lines identified EGFR as a MSI2-regulated protein. MSI2 control of EGFR expression and activity in an NSCLC cell line panel was studied using RT-PCR, Western blots, and RNA immunoprecipitation. Functional consequences of MSI2 depletion were explored for cell growth and response to EGFR-targeting drugs, in vitro and in vivo. Expression relationships were validated using human tissue microarrays. MSI2 depletion significantly reduced EGFR protein expression, phosphorylation, or both. Comparison of protein and mRNA expression indicated a post-transcriptional activity of MSI2 in control of steady state levels of EGFR. RNA immunoprecipitation analysis demonstrated that MSI2 directly binds to EGFR mRNA, and sequence analysis predicted MSI2 binding sites in the murine and human EGFR mRNAs. MSI2 depletion selectively impaired cell proliferation in NSCLC cell lines with activating mutations of EGFR (EGFRmut). Further, depletion of MSI2 in combination with EGFR inhibitors such as erlotinib, afatinib, and osimertinib selectively reduced the growth of EGFRmut NSCLC cells and xenografts. EGFR and MSI2 were significantly co-expressed in EGFRmut human NSCLCs. These results define MSI2 as a direct regulator of EGFR protein expression, and suggest inhibition of MSI2 could be of clinical value in EGFRmut NSCLC.

18.
Front Oncol ; 10: 576314, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194687

RESUMEN

Body composition refers to the proportional content of body fat mass and lean body mass that can lead to a continuum of different phenotypes ranging from cachectic/sarcopenic state to obesity. The heterogenetic phenotypes of body composition can contribute to formation of some cancer types and can sometimes lead to disparate outcomes. Both of these extremes of the spectrum exist in patients with non-small cell lung carcinoma (NSCLC). The discovery of new pathways that drive tumorigenesis contributing to cancer progression and resistance have expanded our understanding of cancer biology leading to development of new targeted therapies including tyrosine kinase inhibitors (TKI) and immune checkpoint inhibitors (ICI) that have changed the landscape of NSCLC treatment. However, in the new era of precision medicine, the impact of body composition phenotypes on treatment outcomes and survival is now being elucidated. In this review, we will discuss the emerging evidence of a link between body composition and outcomes in patients with NSCLC treated with TKI and ICI. We will also discuss suggested mechanisms by which body composition can impact tumor behavior and anti-tumor immunological response.

19.
Br J Cancer ; 123(12): 1749-1756, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32968206

RESUMEN

BACKGROUND: Multi-targeted tyrosine kinase inhibitors (TKIs) are the standard of care for patients with advanced clear cell renal cell carcinoma (ccRCC). However, a significant number of ccRCC patients are primarily refractory to targeted therapeutics, showing neither disease stabilisation nor clinical benefits. METHODS: We used CRISPR/Cas9-based high-throughput loss of function (LOF) screening to identify cellular factors involved in the resistance to sunitinib. Next, we validated druggable molecular factors that are synthetically lethal with sunitinib treatment using cell and animal models of ccRCC. RESULTS: Our screening identified farnesyltransferase among the top hits contributing to sunitinib resistance in ccRCC. Combined treatment with farnesyltransferase inhibitor lonafarnib potently augmented the anti-tumour efficacy of sunitinib both in vitro and in vivo. CONCLUSION: CRISPR/Cas9 LOF screening presents a promising approach to identify and target cellular factors involved in the resistance to anti-cancer therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Farnesiltransferasa/antagonistas & inhibidores , Neoplasias Renales/tratamiento farmacológico , Piperidinas/farmacología , Piridinas/farmacología , Sunitinib/farmacología , Animales , Antineoplásicos/farmacocinética , Apoptosis , Sistemas CRISPR-Cas , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Fragmentación del ADN , Interacciones Farmacológicas , Quimioterapia Combinada , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Lisosomas , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Terapia Molecular Dirigida , Trasplante de Neoplasias , Supervivencia sin Progresión , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño , Distribución Aleatoria , Sunitinib/farmacocinética
20.
Cancer ; 126(2): 260-270, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31691957

RESUMEN

The emergence of immunotherapy has dramatically changed how non-small cell lung cancer is treated, and longer survival is now possible for some patients, even those with advanced disease. Although some patients achieve durable responses to checkpoint blockade, not all experience such benefits, and some suffer from significant immunotoxicities. Given this, biomarkers that predict response to therapy are essential, and testing for tumor programmed death ligand 1(PD-L1) expression is the current standard. The extent of PD-L1 expression determined by immunohistochemistry (IHC) has demonstrated a correlation with treatment response, although limitations with this marker exist. Recently, tumor mutational burden has emerged as an alternative biomarker, and studies have demonstrated its utility, irrespective of the PD-L1 level of a tumor. Gene expression signatures, tumor genotype (such as the presence of an oncogenic driver mutation), as well as the density of tumor-infiltrating lymphocytes in the tumor microenvironment also seem to affect response to immunotherapy and are being researched. Peripheral serum markers are being studied, and some have demonstrated predictive ability, although most are still investigational and need prospective validation. In the current article, the authors review the biomarker PD-L1 as well as other emerging and investigational tissue-based and serum-based markers that have potential to better predict responders to immunotherapy.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Monitoreo de Drogas/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Biopsia Líquida/métodos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Tasa de Mutación , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...