Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stud Mycol ; 105: 1-22, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895705

RESUMEN

The subphylum Saccharomycotina is a lineage in the fungal phylum Ascomycota that exhibits levels of genomic diversity similar to those of plants and animals. The Saccharomycotina consist of more than 1 200 known species currently divided into 16 families, one order, and one class. Species in this subphylum are ecologically and metabolically diverse and include important opportunistic human pathogens, as well as species important in biotechnological applications. Many traits of biotechnological interest are found in closely related species and often restricted to single phylogenetic clades. However, the biotechnological potential of most yeast species remains unexplored. Although the subphylum Saccharomycotina has much higher rates of genome sequence evolution than its sister subphylum, Pezizomycotina, it contains only one class compared to the 16 classes in Pezizomycotina. The third subphylum of Ascomycota, the Taphrinomycotina, consists of six classes and has approximately 10 times fewer species than the Saccharomycotina. These data indicate that the current classification of all these yeasts into a single class and a single order is an underappreciation of their diversity. Our previous genome-scale phylogenetic analyses showed that the Saccharomycotina contains 12 major and robustly supported phylogenetic clades; seven of these are current families (Lipomycetaceae, Trigonopsidaceae, Alloascoideaceae, Pichiaceae, Phaffomycetaceae, Saccharomycodaceae, and Saccharomycetaceae), one comprises two current families (Dipodascaceae and Trichomonascaceae), one represents the genus Sporopachydermia, and three represent lineages that differ in their translation of the CUG codon (CUG-Ala, CUG-Ser1, and CUG-Ser2). Using these analyses in combination with relative evolutionary divergence and genome content analyses, we propose an updated classification for the Saccharomycotina, including seven classes and 12 orders that can be diagnosed by genome content. This updated classification is consistent with the high levels of genomic diversity within this subphylum and is necessary to make the higher rank classification of the Saccharomycotina more comparable to that of other fungi, as well as to communicate efficiently on lineages that are not yet formally named. Taxonomic novelties: New classes: Alloascoideomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Dipodascomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Lipomycetes M. Groenew., Hittinger, Opulente, A. Rokas, Pichiomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Sporopachydermiomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Trigonopsidomycetes M. Groenew., Hittinger, Opulente & A. Rokas. New orders: Alloascoideomycetes: Alloascoideales M. Groenew., Hittinger, Opulente & A. Rokas; Dipodascomycetes: Dipodascales M. Groenew., Hittinger, Opulente & A. Rokas; Lipomycetes: Lipomycetales M. Groenew., Hittinger, Opulente & A. Rokas; Pichiomycetes: Alaninales M. Groenew., Hittinger, Opulente & A. Rokas, Pichiales M. Groenew., Hittinger, Opulente & A. Rokas, Serinales M. Groenew., Hittinger, Opulente & A. Rokas; Saccharomycetes: Phaffomycetales M. Groenew., Hittinger, Opulente & A. Rokas, Saccharomycodales M. Groenew., Hittinger, Opulente & A. Rokas; Sporopachydermiomycetes: Sporopachydermiales M. Groenew., Hittinger, Opulente & A. Rokas; Trigonopsidomycetes: Trigonopsidales M. Groenew., Hittinger, Opulente & A. Rokas. New families: Alaninales: Pachysolenaceae M. Groenew., Hittinger, Opulente & A. Rokas; Pichiales: Pichiaceae M. Groenew., Hittinger, Opulente & A. Rokas; Sporopachydermiales: Sporopachydermiaceae M. Groenew., Hittinger, Opulente & A. Rokas. Citation: Groenewald M, Hittinger CT, Bensch K, Opulente DA, Shen X-X, Li Y, Liu C, LaBella AL, Zhou X, Limtong S, Jindamorakot S, Gonçalves P, Robert V, Wolfe KH, Rosa CA, Boekhout T, Cadez N, Péter G, Sampaio JP, Lachance M-A, Yurkov AM, Daniel H-M, Takashima M, Boundy-Mills K, Libkind D, Aoki K, Sugita T, Rokas A (2023). A genome-informed higher rank classification of the biotechnologically important fungal subphylum Saccharomycotina. Studies in Mycology 105: 1-22. doi: 10.3114/sim.2023.105.01 This study is dedicated to the memory of Cletus P. Kurtzman (1938-2017), a pioneer of yeast taxonomy.

2.
J Appl Microbiol ; 129(2): 162-174, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31758754

RESUMEN

Collections of micro-organisms are a crucial element of life science research infrastructure but are vulnerable to loss and damage caused by natural or man-made disasters, the untimely death or retirement of personnel, or the loss of research funding. Preservation of biological collections has risen in priority due to a new appreciation for discoveries linked to preserved specimens, emerging hurdles to international collecting and decreased funding for new collecting. While many historic collections have been lost, several have been preserved, some with dramatic rescue stories. Rescued microbes have been used for discoveries in areas of health, biotechnology and basic life science. Suggestions for long-term planning for microbial stocks are listed, as well as inducements for long-term preservation.


Asunto(s)
Preservación Biológica , Investigación Biomédica , Biotecnología , Microbiología Ambiental , Humanos , Preservación Biológica/métodos , Preservación Biológica/tendencias , Estados Unidos
3.
J Microbiol Methods ; 91(2): 321-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22985718

RESUMEN

A rapid and inexpensive method for estimating lipid content of yeasts is needed for screening large numbers of yeasts samples. Nile red is a fluorescent lipophilic dye used for detection and quantification of intracellular lipid droplets in various biological system including algae, yeasts and filamentous fungi. However, a published assay for yeast is affected by variable diffusion across the cell membrane, and variation in the time required to reach maximal fluorescence emission. In this study, parameters that may influence the emission were varied to determine optimal assay conditions. An improved assay with a high-throughput capability was developed that includes the addition of dimethyl sulfoxide (DMSO) solvent to improve cell permeability, elimination of the washing step, the reduction of Nile red concentration, kinetic readings rather than single time-point reading, and utilization of a black 96-well microplate. The improved method was validated by comparison to gravimetric determination of lipid content of a broad variety of ascomycete and basidiomycete yeast species.


Asunto(s)
Lípidos/análisis , Oxazinas/metabolismo , Coloración y Etiquetado/métodos , Levaduras/química , Fluorescencia , Ensayos Analíticos de Alto Rendimiento/métodos
4.
FEMS Yeast Res ; 4(3): 253-8, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14654429

RESUMEN

Ten different versions of the D1/D2 divergent domain of the large-subunit ribosomal DNA were identified among interbreeding members of the yeast species Clavispora lusitaniae. One major polymorphism, located in a 90-bp structural motif of the D2 domain, exists in two versions that differ by 32 base substitutions. Three other polymorphisms consist of a two-base substitution, a two-base deletion, and a single-base deletion, respectively. The polymorphisms are independent of one another and of the two mating types, indicating that the strains studied belong to a single, sexually active Mendelian population. Several strains were heterogeneous for one or more of the polymorphisms, and one strain was found to be automictic and capable of producing asci on its own by isogamous conjugation or by bud-parent autogamy. These observations suggest circumspection in the use of sequence divergence as the principal criterion for delimiting yeast species.


Asunto(s)
Polimorfismo Genético , ARN Ribosómico/genética , Saccharomycetales/clasificación , Saccharomycetales/genética , ADN de Hongos/análisis , ADN de Hongos/genética , Variación Genética , Filogenia , ARN Ribosómico/análisis , Saccharomycetales/fisiología
5.
Appl Environ Microbiol ; 63(3): 916-23, 1997 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9055410

RESUMEN

We previously reported the isolation of a 21.5-kb genomic DNA fragment from Pseudomonas sp. strain ADP, which contains the atzA gene, encoding the first metabolic step for the degradation of the herbicide atrazine (M. de Souza, L. P. Wackett, K. L. Boundy-Mills, R. T. Mandelbaum, and M. J. Sadowsky, Appl. Environ. Microbiol. 61:3373-3378, 1995). In this study, we show that this fragment also contained the second gene of the atrazine metabolic pathway, atzB. AtzB catalyzed the transformation of hydroxyatrazine to N-isopropylammelide. The product was identified by use of high-performance liquid chromatography, mass spectrometery, and nuclear magnetic resonance spectroscopy. Tn5 mutagenesis of pMD1 was used to determine that atzB was located 8 kb downstream of atzA. Hydroxyatrazine degradation activity was localized to a 4.0-kb ClaI fragment, which was subcloned into the vector pACYC184 to produce plasmid pATZB-2. The DNA sequence of this region was determined and found to contain two large overlapping divergent open reading frames, ORF1 and ORF2. ORF1 was identified as the coding region of atzB by demonstrating that (i) only ORF1 was transcribed in Pseudomonas sp. strain ADP, (ii) a Tn5 insertion in ORF2 did not disrupt function, and (iii) codon usage was consistent with ORF1 being translated. AtzB had 25% amino acid identity with TrzA, a protein that catalyzes a hydrolytic deamination of the s-triazine substrate melamine. The atzA and atzB genes catalyze the first two steps of the metabolic pathway in a bacterium that rapidly metabolizes atrazine to carbon dioxide, ammonia, and chloride.


Asunto(s)
Atrazina/metabolismo , Genes Bacterianos , Herbicidas/metabolismo , Pseudomonas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Elementos Transponibles de ADN , ADN Bacteriano/química , Datos de Secuencia Molecular , Sistemas de Lectura Abierta
6.
Appl Environ Microbiol ; 61(9): 3373-8, 1995 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-7574646

RESUMEN

We previously identified a Pseudomonas sp. strain, ADP, which rapidly metabolized atrazine in liquid culture, agar plates, and soils (R. T. Mandelbaum, D. L. Allan, L. P. Wackett, Appl. Environ. Microbiol. 61:1451-1457, 1995). In this study, we report the cloning and partial characterization of a gene region from Pseudomonas sp. strain ADP that encodes atrazine degradation activity. A 22-kb EcoRI genomic DNA fragment, designated pMD1, was shown to encode atrazine dechlorination activity in Escherichia coli DH5 alpha. Atrazine degradation was demonstrated by a zone-clearing assay on agar medium containing crystalline atrazine and by chromatographic methods. A gene conferring the atrazine-clearing phenotype was subsequently subcloned as a 1.9-kb AvaI fragment in pACYC184, designated pMD4, and was expressed in E. coli. This result and random Tn5 mutagenesis established that the 1.9-kb AvaI fragment was essential for atrazine dechlorination. High-pressure liquid and thin-layer chromatographic analyses were used to rigorously establish that E. coli containing pMD4 degraded atrazine and accumulated hydroxyatrazine. Hydroxyatrazine was detected only transiently in E. coli containing pMD1. This is consistent with the idea that hydroxyatrazine is the first metabolite in atrazine degradation by Pseudomonas sp. strain ADP. A 0.6-kb ApaI-PstI fragment from pMD4, containing the putative atrazine chlorohydrolase gene, hybridized to DNA from atrazine-degrading bacteria isolated in Switzerland and Louisiana.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Atrazina/metabolismo , Genes Bacterianos , Herbicidas/metabolismo , Hidrolasas/química , Hidrolasas/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Biodegradación Ambiental , Clonación Molecular , Expresión Génica , Hidrolasas/aislamiento & purificación , Hidrólisis , Mutagénesis Insercional , Hibridación de Ácido Nucleico , Mapeo Restrictivo , Contaminantes del Suelo/metabolismo
7.
Genetics ; 133(1): 39-49, 1993 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8417987

RESUMEN

A nonsense allele of the yeast RAD52 gene, rad52-327, which expresses the N-terminal 65% of the protein was compared to two missense alleles, rad52-1 and rad52-2, and to a deletion allele. While the rad52-1 and the deletion mutants have severe defects in DNA repair, recombination and sporulation, the rad52-327 and rad52-2 mutants retain either partial or complete capabilities in repair and recombination. These two mutants behave similarly in most tests of repair and recombination during mitotic growth. One difference between these two alleles is that a homozygous rad52-2 diploid fails to sporulate, whereas the homozygous rad52-327 diploid sporulates weakly. The low level of sporulation by the rad52-327 diploid is accompanied by a low percentage of spore viability. Among these viable spores the frequency of crossing over for markers along chromosome VII is the same as that found in wild-type spores. rad52-327 complements rad52-2 for repair and sporulation. Weaker intragenic complementation occurs between rad52-327 and rad52-1.


Asunto(s)
Alelos , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/genética , Intercambio Genético , Reparación del ADN , Diploidia , Genes Fúngicos , Prueba de Complementación Genética , Homocigoto , Mitosis , Mutación , Plásmidos , Recombinación Genética , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...