Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38452242

RESUMEN

Neutrophils are the most abundant leukocytes in humans and play a role in the innate immune response by being the first cells attracted to the site of infection. While early studies presented neutrophils as almost exclusively glycolytic cells, recent advances show that these cells use several metabolic pathways other than glycolysis, such as the pentose phosphate pathway, oxidative phosphorylation, fatty acid oxidation, and glutaminolysis, which they modulate to perform their functions. Metabolism shifts from fatty acid oxidation-mediated mitochondrial respiration in immature neutrophils to glycolysis in mature neutrophils. Tissue environments largely influence neutrophil metabolism according to nutrient sources, inflammatory mediators, and oxygen availability. Inhibition of metabolic pathways in neutrophils results in impairment of certain effector functions, such as NETosis, chemotaxis, degranulation, and reactive oxygen species generation. Alteration of these neutrophil functions is implicated in certain human diseases, such as antiphospholipid syndrome, coronavirus disease 2019, and bronchiectasis. Metabolic regulators such as AMPK, HIF-1α, mTOR, and Arf6 are linked to neutrophil metabolism and function and could potentially be targeted for the treatment of diseases associated with neutrophil dysfunction. This review details the effects of alterations in neutrophil metabolism on the effector functions of these cells.

2.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955693

RESUMEN

Synovial fluids from rheumatoid and psoriatic arthritis patients have high levels of PLA1A. The current study was to understand PLA1A functions in the pathophysiology of rheumatic diseases. We generated Pla1a−/− mice to assess their phenotype and the impact of PLA1A deficiency on the development of mannan-induced psoriatic arthritis (MIP). Mice were evaluated routinely for the induced symptoms. On the day of sacrifice, blood samples were collected for hematology analysis and prepared for plasma. Livers were collected. Lymph node immune cells were analyzed using flow cytometry. We performed µCT scans of hind paws from naïve and mannan-induced female mice. Cytokines/chemokines were quantified using Luminex in hind paw tissues and plasma of female mice. Pla1a−/− mice showed a slight increase in circulating and lymph node lymphocytes. CD4+ T cells contributed most to this increase in lymph nodes (p = 0.023). In the MIP model, the lymph node ratios of CD3+ to CD19+ and CD4+ to CD8+ were higher in Pla1a−/− mice. Pla1a−/− mice were less susceptible to MIP (p < 0.001) and showed reduced bone erosions. Pla1a−/− mice also showed reduced IL-17, KC, IP-10, MIP-1ß, LIF, and VEGF in hind paw tissues as compared to WT mice (p < 0.05). These findings indicated that PLA1A deficiency protected from the development of the MIP disease. The data suggested that PLA1A could contribute to MIP through increased activation of lymphocytes, possibly those producing IL-17.


Asunto(s)
Artritis Psoriásica , Interleucina-17 , Animales , Artritis Psoriásica/genética , Citocinas , Femenino , Mananos , Ratones , Fosfolipasas A1
3.
Lupus Sci Med ; 9(1)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35260475

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) released by blood cells have proinflammation and procoagulant action. Patients with systemic lupus erythematosus (SLE) present high vascular inflammation and are prone to develop cardiovascular diseases. Therefore, we postulated that the EV populations found in blood, including platelet EVs (PEVs) and red blood cell EVs (REVs), are associated with SLE disease activity and SLE-associated cardiovascular accidents. METHOD: We assessed autotaxin (ATX) plasma levels by ELISA, the platelet activation markers PAC1 and CD62P, ATX bound to platelets and the amounts of plasma PEVs and REVs by flow cytometry in a cohort of 102 patients with SLE, including 29 incident cases of SLE and 30 controls. Correlation analyses explored the associations with the clinical parameters. RESULT: Platelet activation markers were increased in patients with SLE compared with healthy control, with the marker CD62P associated with the SLE disease activity index (SLEDAI). The incident cases show additional associations between platelet markers (CD62P/ATX and PAC1/CD62P) and the SLEDAI. Compared with controls, patients with SLE presented higher levels of PEVs, phosphatidylserine positive (PS+) PEVs, REVs and PS+ REVs, but there is no association with disease activity. When stratified according to the plasma level of PS+ REVs, the group of patients with SLE with a high level of PS+ REVs presented a higher number of past thrombosis events and higher ATX levels. CONCLUSION: Incident and prevalent forms of SLE cases present similar levels of platelet activation markers, with CD62P correlating with disease activity. Though EVs are not associated with disease activity, the incidence of past thrombotic events is higher in patients with a high level of PS+ REVs.


Asunto(s)
Vesículas Extracelulares , Lupus Eritematoso Sistémico , Trombosis , Biomarcadores , Eritrocitos , Vesículas Extracelulares/metabolismo , Humanos , Lupus Eritematoso Sistémico/complicaciones , Fosfatidilserinas/metabolismo , Trombosis/etiología
5.
Cells ; 12(1)2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36611866

RESUMEN

In phagocytes, cytoskeletal and membrane remodeling is finely regulated at the phagocytic cup. Various smaFll G proteins, including those of the Arf family, control these dynamic processes. Human neutrophils express AGAP2, an Arf GTPase activating protein (ArfGAP) that regulates endosomal trafficking and focal adhesion remodeling. We first examined the impact of AGAP2 on phagocytosis in CHO cells stably expressing the FcγRIIA receptor (CHO-IIA). In unstimulated CHO-IIA cells, AGAP2 only partially co-localized with cytoskeletal elements and intracellular compartments. In CHO-IIA cells, AGAP2 transiently accumulated at actin-rich phagocytic cups and increased Fcγ receptor-mediated phagocytosis. Enhanced phagocytosis was not dependent on the N-terminal GTP-binding protein-like (GLD) domain of AGAP2. AGAP2 deleted of its GTPase-activating protein (GAP) domain was not recruited to phagocytic cups and did not enhance the engulfment of IgG-opsonized beads. However, the GAP-deficient [R618K]AGAP2 transiently localized at the phagocytic cups and enhanced phagocytosis. In PLB-985 cells differentiated towards a neutrophil-like phenotype, silencing of AGAP2 reduced phagocytosis of opsonized zymosan. In human neutrophils, opsonized zymosan or monosodium urate crystals induced AGAP2 phosphorylation. The data indicate that particulate agonists induce AGAP2 phosphorylation in neutrophils. This study highlights the role of AGAP2 and its GAP domain but not GAP activity in FcγR-dependent uptake of opsonized particles.


Asunto(s)
Fagocitosis , Receptores de IgG , Animales , Cricetinae , Humanos , Cricetulus , Proteínas Activadoras de GTPasa/metabolismo , Fagocitosis/fisiología , Receptores de IgG/metabolismo , Transducción de Señal , Zimosan , Proteínas de Unión al GTP/metabolismo
6.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884486

RESUMEN

Lysophosphatidylserine (lysoPS) is known to regulate immune cell functions. Phospholipase A1 member A (PLA1A) can generate this bioactive lipid through hydrolysis of sn-1 fatty acids on phosphatidylserine (PS). PLA1A has been associated with cancer metastasis, asthma, as well as acute coronary syndrome. However, the functions of PLA1A in the development of systemic autoimmune rheumatic diseases remain elusive. To investigate the possible implication of PLA1A during rheumatic diseases, we monitored PLA1A in synovial fluids from patients with rheumatoid arthritis and plasma of early-diagnosed arthritis (EA) patients and clinically stable systemic lupus erythematosus (SLE) patients. We used human primary fibroblast-like synoviocytes (FLSs) to evaluate the PLA1A-induced biological responses. Our results highlighted that the plasma concentrations of PLA1A in EA and SLE patients were elevated compared to healthy donors. High concentrations of PLA1A were also detected in synovial fluids from rheumatoid arthritis patients compared to those from osteoarthritis (OA) and gout patients. The origin of PLA1A in FLSs and the arthritic joints remained unknown, as healthy human primary FLSs does not express the PLA1A transcript. Besides, the addition of recombinant PLA1A stimulated cultured human primary FLSs to secrete IL-8. Preincubation with heparin, autotaxin (ATX) inhibitor HA130 or lysophosphatidic acid (LPA) receptor antagonist Ki16425 reduced PLA1A-induced-secretion of IL-8. Our data suggested that FLS-associated PLA1A cleaves membrane-exposed PS into lysoPS, which is subsequently converted to LPA by ATX. Since primary FLSs do not express any lysoPS receptors, the data suggested PLA1A-mediated pro-inflammatory responses through the ATX-LPA receptor signaling axis.


Asunto(s)
Artritis/patología , Fibroblastos/patología , Gota/patología , Lupus Eritematoso Sistémico/patología , Fosfolipasas A1/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Sinoviocitos/patología , Artritis/genética , Artritis/inmunología , Artritis/metabolismo , Estudios de Casos y Controles , Femenino , Fibroblastos/inmunología , Fibroblastos/metabolismo , Gota/genética , Gota/inmunología , Gota/metabolismo , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Masculino , Fosfolipasas A1/genética , Hidrolasas Diéster Fosfóricas/genética , Receptores del Ácido Lisofosfatídico/genética , Líquido Sinovial/inmunología , Líquido Sinovial/metabolismo , Sinoviocitos/inmunología , Sinoviocitos/metabolismo
7.
Free Radic Biol Med ; 172: 550-561, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34245858

RESUMEN

The small GTPase Arf6 regulates many cellular processes, including cytoskeletal remodeling, receptor endocytosis, and pathogen phagocytosis. Arf6 silencing in neutrophil (PMN)-like cells is well-known to inhibit chemotactic peptide-mediated activation of phospholipase D, the oxidative burst, and ß2 integrin-dependent adhesion. In conditional knockout (cKO) mice, the migration to inflammatory sites of Arf6-deficient PMNs was diminished and associated with reduced cell surface expression of ß2 integrins. In this study we assessed the impact of Arf6 depletion on the functions and gene expression profile of PMNs isolated from the mouse air pouch. Numerous genes involved in response to oxygen levels, erythrocyte and myeloid differentiation, macrophage chemotaxis, response to chemicals, apoptosis, RNA destabilization, endosome organization, and vesicle transport were differentially expressed in PMNs cKO for Arf6. Lpar6 and Lacc-1 were the most up-regulated and down-regulated genes, respectively. The deletion of Arf6 also decreased Lacc-1 protein level in PMNs, and silencing of Arf6 in THP-1 monocytic cells delayed LPS-mediated Lacc-1 expression. We report that fMLP or zymosan-induced glycolysis and oxygen consumption rate were both decreased in air pouch PMNs but not in bone marrow PMNs of Arf6 cKO mice. Reduced oxygen consumption correlated with a decrease in superoxide and ROS production. Deletion of Arf6 in PMNs also reduced phagocytosis and interfered with apoptosis. The data suggest that Arf6 regulates energy metabolism, which may contribute to impaired phagocytosis, ROS production, and apoptosis in PMN-Arf6 cKO. This study provides new information on the functions and the inflammatory pathways influenced by Arf6 in PMNs.


Asunto(s)
Neutrófilos , Estallido Respiratorio , Animales , Metabolismo Energético/genética , Ratones , Fagocitosis , Superóxidos
8.
Biochem Pharmacol ; 192: 114667, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34216604

RESUMEN

Evidence is growing for the role of red blood cells (RBCs) in vascular homeostasis, including thrombogenic events and inflammation. Lysophosphatidic acid (LPA) is known to induce phosphatidylserine (PS) exposure and the release of RBC Extracellular Vesicles (REVs). Using high sensitivity flow cytometry, we examined the effects and the mechanisms by which the LPA species commonly found in human plasma could activate RBCs. We report that LPA 16:0, 18:0 and 18:1, but not LPA 20:4, induced PS exposure and the release of small PS- and large PS+ REVs through LPA3 receptor signalling in RBCs. The release of large PS+ REVs required higher concentrations of LPA. RBCs were not activated by LPA 20:4. Interestingly, blockade of LPA2 enhanced LPA-mediated PS- REV release in RBCs. Furthermore, LPA receptor agonists and antagonists highlighted that LPA 20:4 inhibited LPA3-dependent PS exposure and, through the LPA2 receptor, inhibited PS- REV production. Activation of RBCs with LPA 18:1 in normal plasma stimulated the release of PS- and PS+ REVs. REVs released in response to LPA were similar to those found in the plasma of systemic lupus erythematosus patients. Our results suggest that LPA species exhibit different biological activities in RBCs through targeting LPA2 and/or LPA3 receptors.


Asunto(s)
Membrana Celular/metabolismo , Eritrocitos/metabolismo , Vesículas Extracelulares/metabolismo , Lisofosfolípidos/farmacología , Fosfatidilserinas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Membrana Celular/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Femenino , Humanos , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Masculino
9.
Blood ; 138(25): 2607-2620, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34293122

RESUMEN

In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by the budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery are transferred to PEVs by activated platelets. Using molecular and functional assays, we found that the active 20S proteasome was enriched in PEVs, along with major histocompatibility complex class I (MHC-I) and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were augmented, however, after immune complex injections in mice. The complete biodistribution of murine PEVs after injection into mice revealed that they principally reached lymphoid organs, such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent, liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules, which promoted OVA-specific CD8+ T-lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.


Asunto(s)
Plaquetas/inmunología , Vesículas Extracelulares/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Animales , Presentación de Antígeno , Plaquetas/química , Vesículas Extracelulares/química , Antígenos de Histocompatibilidad Clase I/análisis , Humanos , Ratones , Ratones Endogámicos C57BL , Complejo de la Endopetidasa Proteasomal/análisis
10.
Prog Lipid Res ; 83: 101112, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34166709

RESUMEN

Various human tissues and cells express phospholipase A1 member A (PLA1A), including the liver, lung, prostate gland, and immune cells. The enzyme belongs to the pancreatic lipase family. PLA1A specifically hydrolyzes sn-1 fatty acid of phosphatidylserine (PS) or 1-acyl-lysophosphatidylserine (1-acyl-lysoPS). PS externalized by activated cells or apoptotic cells or extracellular vesicles is a potential source of substrate for the production of unsaturated lysoPS species by PLA1A. Maturation and functions of many immune cells, such as T cells, dendritic cells, macrophages, and mast cells, can be regulated by PLA1A and lysoPS. Several lysoPS receptors, including GPR34, GPR174 and P2Y10, have been identified. High serum levels and high PLA1A expression are associated with autoimmune disorders such as Graves' disease and systemic lupus erythematosus. Increased expression of PLA1A is associated with metastatic melanomas. PLA1A may contribute to cardiometabolic disorders through mediating cholesterol transportation and producing lysoPS. Furthermore, PLA1A is necessary for hepatitis C virus assembly and can play a role in the antivirus innate immune response. This review summarizes recent findings on PLA1A expression, lysoPS and lysoPS receptors in autoimmune disorders, cancers, cardiometabolic disorders, antivirus immune responses, as well as regulations of immune cells.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Ácidos Grasos , Humanos , Lisofosfolípidos , Masculino , Fosfatidilserinas , Fosfolipasas A1
11.
J Immunol ; 206(8): 1943-1956, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33762327

RESUMEN

The concept of plasticity of neutrophils is highlighted by studies showing their ability to transdifferentiate into APCs. In this regard, transdifferentiated neutrophils were found at inflammatory sites of autoimmune arthritis (AIA). Exposure of neutrophils to inflammatory stimuli prolongs their survival, thereby favoring the acquisition of pathophysiologically relevant phenotypes and functions. By using microarrays, quantitative RT-PCR, and ELISAs, we showed that long-lived (LL) neutrophils obtained after 48 h of culture in the presence of GM-CSF, TNF, and IL-4 differentially expressed genes related to apoptosis, MHC class II, immune response, and inflammation. The expression of anti-inflammatory genes mainly of peptidase inhibitor families is upregulated in LL neutrophils. Among these, the PI3 gene encoding elafin was the most highly expressed. The de novo production of elafin by LL neutrophils depended on a synergism between GM-CSF and TNF via the activation and cooperativity of C/EBPß and NF-κB pathways, respectively. Elafin concentrations were higher in synovial fluids (SF) of patients with AIA than in SF of osteoarthritis. SF neutrophils produced more elafin than blood counterparts. These results are discussed with respect to implications of neutrophils in chronic inflammation and the potential influence of elafin in AIA.


Asunto(s)
Artritis/inmunología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Elafina/metabolismo , Inflamación/inmunología , FN-kappa B/metabolismo , Neutrófilos/inmunología , Osteoartritis/inmunología , Autoinmunidad , Células Cultivadas , Elafina/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Interleucina-4/metabolismo , Transducción de Señal , Líquido Sinovial/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
Mediators Inflamm ; 2020: 2713074, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322163

RESUMEN

Chemoattractant sensing, adhesiveness, and migration are critical events underlying the recruitment of neutrophils (PMNs) to sites of inflammation or infection. Defects in leukocyte adhesion or migration result in immunodeficiency disorders characterized by recurrent infections. In this study, we evaluated the role of Arf6 on PMN adhesion in vitro and on migration to inflammatory sites using PMN-Arf6 conditional knockout (cKO) mice. In PMN-like PLB-985 silenced for Arf6 fMLP-mediated adhesion to the ß2 integrin ligands, ICAM-1 and fibrinogen or the ß1/ß2 integrin ligand fibronectin was significantly reduced. Furthermore, overexpression of wild-type Arf6 promoted basal and fMLP-induced adhesion to immobilized integrin ligands, while overexpression of the dominant-negative Arf6 has the opposite effects. Using the Elane-Cre deleting mouse strains, we report that the level of Arf6 deletion in inflammatory PMNs isolated from the dorsal air pouches was stronger when compared to naïve cells isolated from the bone marrow. In PMN-Arf6 cKO mice, the recruitment of PMNs into the dorsal air pouch injected with LPS or the chemoattractant fMLP was significantly diminished. Impaired cell migration correlated with reduced cell surface expression of CD11a and CD11b in Arf6 cKO PMNs. Our results highlight that Arf6 regulates the activity and possibly the recycling of PMN integrins, and this compromises PMN migration to inflammatory sites.


Asunto(s)
Neutrófilos/citología , Neutrófilos/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Recuento de Células Sanguíneas , Western Blotting , Línea Celular , Células Cultivadas , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Citometría de Flujo , Vectores Genéticos/genética , Humanos , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Antígeno de Macrófago-1/genética , Antígeno de Macrófago-1/metabolismo , Ratones , Ratones Noqueados , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Br J Cancer ; 121(12): 1016-1026, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31673104

RESUMEN

BACKGROUND: Phospholipases D1 and D2 (PLD1/2) are implicated in tumorigenesis through their generation of the signalling lipid phosphatidic acid and its downstream effects. Inhibition of PLD1 blocks prostate cell growth and colony formation. Here a role for PLD2 in prostate cancer (PCa), the major cancer of men in the western world, is examined. METHODS: PLD2 expression was analysed by immunohistochemistry and western blotting. The effects of PLD2 inhibition on PCa cell viability and cell motility were measured using MTS, colony forming and wound-healing assays. RESULTS: PLD2 protein is expressed about equally in luminal and basal prostate epithelial cells. In cells from different Gleason-scored PCa tissue PLD2 protein expression is generally higher than in non-tumorigenic cells and increases in PCa tissue scored Gleason 6-8. PLD2 protein is detected in the cytosol and nucleus and had a punctate appearance. In BPH tissue stromal cells as well as basal and luminal cells express PLD2. PLD2 protein co-expresses with chromogranin A in castrate-resistant PCa tissue. PLD2 inhibition reduces PCa cell viability, colony forming ability and directional cell movement. CONCLUSIONS: PLD2 expression correlates with increasing Gleason score to GS8. PLD2 inhibition has the potential to reduce PCa progression.


Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , Fosfolipasa D/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Clasificación del Tumor , Neoplasias/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , Transducción de Señal/genética
14.
Biochem Pharmacol ; 164: 74-81, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30928673

RESUMEN

Lysophosphatidic acid (LPA) is a well-characterized bioactive lipid mediator, which is involved in development, physiology, and pathological processes of the cardiovascular system. LPA can be produced both inside cells and in biological fluids. The majority of extracellularLPAis produced locally by the secreted lysophospholipase D, autotaxin (ATX), through its binding to various ß integrins or heparin sulfate on cell surface and hydrolyzing various lysophospholipids. LPA initiates cellular signalling pathways upon binding to and activation of its G protein-coupled receptors (LPA1-6). LPA has potent effects on various blood cells and vascular cells involved in the development of cardiovascular diseases such as atherosclerosis and aortic valve sclerosis. LPA signalling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, as well as angiogenesis. For instance, LPA promotes activation and aggregation of platelets through LPA5, increases expression of adhesion molecules in endothelial cells, and enhances expression of tissue factor in vascular smooth muscle cells. Furthermore, LPA induces differentiation of monocytes into macrophages and stimulates oxidized low-density lipoproteins (oxLDLs) uptake by macrophages to form foam cells during formation of atherosclerotic lesions through LPA1-3. This review summarizes recent findings of the roles played by ATX, LPA and LPA receptors (LPARs) in atherosclerosis and calcific aortic valve disease. Targeting the ATX-LPAR axis may have potential applications for treatment of patients suffering from various cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Animales , Sistemas de Liberación de Medicamentos/tendencias , Humanos
15.
Biochem Pharmacol ; 165: 249-262, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30753812

RESUMEN

Sphingosine kinase 1 (SphK1) and 2 (SphK2) have been shown contribute to synovial inflammation in animal models of arthritis. However, low levels of intracellular sphingosine-1 phosphate (S1P) were reported in fibroblast-like synoviocytes (FLS) from patients in the end stage of rheumatoid arthritis (RA) compared to normal FLS. Moreover, the S1P receptor-mediated chemokine synthesis was altered in RAFLS in response to chemical hypoxia. Since the mechanisms responsible for low levels of intracellular S1P in RAFLS are not fully identified, we evaluated the contribution of SphKs to the S1P-induced synthesis of chemokines under conditions of chemical hypoxia. Our results show that a chemical hypoxia mimetic cobalt chloride (CoCl2) increased SphK1 expression and activation in normal FLS but not in RAFLS. Using selective inhibitors of SphKs and gene silencing approaches, we provide evidence that both SphK1 and SphK2 are involved in hypoxia-induced chemokine production in normal FLS. In contrast, only SphK2 mediates hypoxia-induced chemokine production in RAFLS. Moreover, CoCl2 increased S1P2 and S1P3 receptor mRNA levels in normal FLS but not in RAFLS. The data suggest that altered expression and/or activation of SphK1 combined with reduced induction of S1P receptor expression by CoCl2 impaired the CoCl2-mediated autocrine S1P receptor signaling loop and chemokine production in RAFLS.


Asunto(s)
Artritis Reumatoide/enzimología , Fibroblastos/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Membrana Sinovial/enzimología , Hipoxia de la Célula , Células Cultivadas , Quimiocinas/metabolismo , Cobalto/farmacología , Activación Enzimática , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Receptores de Esfingosina-1-Fosfato/fisiología
16.
Front Pharmacol ; 8: 848, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209219

RESUMEN

Lysophosphatidic acid (LPA) is a pleiotropic bioactive lysophospholipid involved in inflammatory mediator synthesis. Signaling through p38MAPK, ERK, Rho kinase, and MSK-CREB contributes to LPA-mediated IL-8 production in fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients. The study was undertaken to investigate how LPA activates MSKs and how signaling crosstalk between TNFα and LPA contributes to the super-production of cytokines/chemokines. RAFLS pretreated or not with TNFα were stimulated with LPA. Immunoblotting with phospho-antibodies monitored MSK activation. Cytokine/chemokine production was measured using ELISA and multiplex immunoassays. LPA induced MSK activation by signaling through ERK whereas p38MAPK, Rho kinase, NF-κB or PI3K contribute to IL-8 synthesis mainly via MSK-independent pathways. Priming with TNFα enhanced LPA-mediated MSK phosphorylation and cytokine/chemokine production. After priming with TNFα, inhibition of ERK or MSK failed to attenuate LPA-mediated IL-8 synthesis even if the MSK-CREB signaling axis was completely or partially inhibited. In TNFα-primed cells, inhibition of LPA-mediated cytokine/chemokine synthesis required a specific combination of inhibitors such as p38MAPK and ERK for IL-8 and IL-6, and Rho kinase and NF-κB for MCP-1. The ability of the signaling inhibitors to block LPA induced cytokine/chemokine synthesis is dependent on the inflammatory cytokinic environment. In TNFα-primed RAFLS the super-production of IL-8 and IL-6 induced by LPA occurs mainly via MSK-independent pathways, and simultaneous inhibition of at least two MAPK signaling pathways was required to block their synthesis. Since simultaneous inhibition of both the p38MAPK and ERK-MSK-CREB pathways are required to significantly reduce LPA-mediated IL-8 and IL-6 production in TNFα-preconditioned RAFLS, drug combinations targeting these two pathways are potential new strategies to treat rheumatoid arthritis.

17.
Front Pharmacol ; 8: 78, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28270767

RESUMEN

In asthma, excessive bronchial narrowing associated with thickening of the airway smooth muscle (ASM) causes respiratory distress. Numerous pharmacological agents prevent experimental airway hyperresponsiveness (AHR) when delivered prophylactically. However, most fail to resolve this feature after disease is instated. Although sphingosine analogs are primarily perceived as immune modulators with the ability to prevent experimental asthma, they also influence processes associated with tissue atrophy, supporting the hypothesis that they could interfere with mechanisms sustaining pre-established AHR. We thus assessed the ability of a sphingosine analog (AAL-R) to reverse AHR in a chronic model of asthma. We dissected the pharmacological mechanism of this class of agents using the non-phosphorylatable chiral isomer AAL-S and the pre-phosphorylated form of AAL-R (AFD-R) in vivo and in human ASM cells. We found that a therapeutic course of AAL-R reversed experimental AHR in the methacholine challenge test, which was not replicated by dexamethasone or the non-phosphorylatable isomer AAL-S. AAL-R efficiently interfered with ASM cell proliferation in vitro, supporting the concept that immunomodulation is not necessary to interfere with cellular mechanisms sustaining AHR. Moreover, the sphingosine-1-phosphate lyase inhibitor SM4 and the sphingosine-1-phosphate receptor antagonist VPC23019 failed to inhibit proliferation, indicating that intracellular accumulation of sphingosine-1-phosphate or interference with cell surface S1P1/S1P3 activation, are not sufficient to induce cytostasis. Potent AAL-R-induced cytostasis specifically related to its ability to induce intracellular AFD-R accumulation. Thus, a sphingosine analog that possesses the ability to be phosphorylated in situ interferes with cellular mechanisms that beget AHR.

18.
J Immunol Res ; 2015: 235170, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26609537

RESUMEN

Polymorphonuclear neutrophils (PMNs) are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs) to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS) and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology.


Asunto(s)
GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Neutrófilos/enzimología , Neutrófilos/inmunología , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Membrana Celular/inmunología , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética
19.
Mediators Inflamm ; 2015: 436525, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26556954

RESUMEN

Emerging evidence suggests a role for sphingosine-1-phosphate (S1P) in various aspects of rheumatoid arthritis (RA) pathogenesis. In this study we compared the effect of chemical hypoxia induced by cobalt chloride (CoCl2) on the expression of S1P metabolic enzymes and cytokine/chemokine secretion in normal fibroblast-like synoviocytes (FLS) and RAFLS. RAFLS incubated with CoCl2, but not S1P, produced less IL-8 and MCP-1 than normal FLS. Furthermore, incubation with the S1P2 and S1P3 receptor antagonists, JTE-013 and CAY10444, reduced CoCl2-mediated chemokine production in normal FLS but not in RAFLS. RAFLS showed lower levels of intracellular S1P and enhanced mRNA expression of S1P phosphatase 1 (SGPP1) and S1P lyase (SPL), the enzymes that are involved in intracellular S1P degradation, when compared to normal FLS. Incubation with CoCl2 decreased SGPP1 mRNA and protein and SPL mRNA as well. Inhibition of SPL enhanced CoCl2-mediated cytokine/chemokine release and restored autocrine activation of S1P2 and S1P3 receptors in RAFLS. The results suggest that the sphingolipid pathway regulating the intracellular levels of S1P is dysregulated in RAFLS and has a significant impact on cell autocrine activation by S1P. Altered sphingolipid metabolism in FLS from patients with advanced RA raises the issue of synovial cell burnout due to chronic inflammation.


Asunto(s)
Artritis Reumatoide/inmunología , Lisofosfolípidos/fisiología , Transducción de Señal/fisiología , Esfingosina/análogos & derivados , Membrana Sinovial/inmunología , Hipoxia de la Célula , Quimiocinas/biosíntesis , Cobalto/farmacología , Fibroblastos/inmunología , Humanos , Proteínas de la Membrana/genética , Monoéster Fosfórico Hidrolasas/genética , Esfingosina/fisiología , Estrés Fisiológico , Membrana Sinovial/citología , Tiazolidinas/farmacología
20.
Mediators Inflamm ; 2015: 248492, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26339130

RESUMEN

Lysophosphatidic acid (LPA) is a bioactive phospholipid playing an important role in various inflammatory diseases by inducing expression and secretion of many inflammatory cytokines/chemokines. Here we report in a murine air pouch model of inflammation that LPA induced CXCL13 secretion in a time-dependent manner and with exacerbation of the response when LPA was administered after a pretreatment with TNF-α, a key inflammatory cytokine. LPA mediates recruitment of leukocytes, including that of CD3(+) cells into unprimed and TNF-α-primed air pouches. CXCL13 neutralization using a blocking antibody injected into air pouches prior to administration of LPA into TNF-α-primed air pouches decreased CD3(+) cell influx. Our data highlight that LPA-mediated CXCL13 secretion plays a role in T cell recruitment and participates in regulation of the inflammatory response.


Asunto(s)
Quimiocina CXCL13/metabolismo , Lisofosfolípidos/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Animales , Femenino , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...