Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
AJNR Am J Neuroradiol ; 45(4): 475-482, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38453411

RESUMEN

BACKGROUND AND PURPOSE: Response on imaging is widely used to evaluate treatment efficacy in clinical trials of pediatric gliomas. While conventional criteria rely on 2D measurements, volumetric analysis may provide a more comprehensive response assessment. There is sparse research on the role of volumetrics in pediatric gliomas. Our purpose was to compare 2D and volumetric analysis with the assessment of neuroradiologists using the Brain Tumor Reporting and Data System (BT-RADS) in BRAF V600E-mutant pediatric gliomas. MATERIALS AND METHODS: Manual volumetric segmentations of whole and solid tumors were compared with 2D measurements in 31 participants (292 follow-up studies) in the Pacific Pediatric Neuro-Oncology Consortium 002 trial (NCT01748149). Two neuroradiologists evaluated responses using BT-RADS. Receiver operating characteristic analysis compared classification performance of 2D and volumetrics for partial response. Agreement between volumetric and 2D mathematically modeled longitudinal trajectories for 25 participants was determined using the model-estimated time to best response. RESULTS: Of 31 participants, 20 had partial responses according to BT-RADS criteria. Receiver operating characteristic curves for the classification of partial responders at the time of first detection (median = 2 months) yielded an area under the curve of 0.84 (95% CI, 0.69-0.99) for 2D area, 0.91 (95% CI, 0.80-1.00) for whole-volume, and 0.92 (95% CI, 0.82-1.00) for solid volume change. There was no significant difference in the area under the curve between 2D and solid (P = .34) or whole volume (P = .39). There was no significant correlation in model-estimated time to best response (ρ = 0.39, P >.05) between 2D and whole-volume trajectories. Eight of the 25 participants had a difference of ≥90 days in transition from partial response to stable disease between their 2D and whole-volume modeled trajectories. CONCLUSIONS: Although there was no overall difference between volumetrics and 2D in classifying partial response assessment using BT-RADS, further prospective studies will be critical to elucidate how the observed differences in tumor 2D and volumetric trajectories affect clinical decision-making and outcomes in some individuals.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/terapia , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Proteínas Proto-Oncogénicas B-raf , Resultado del Tratamiento
2.
Sci Data ; 11(1): 254, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424079

RESUMEN

Resection and whole brain radiotherapy (WBRT) are standard treatments for brain metastases (BM) but are associated with cognitive side effects. Stereotactic radiosurgery (SRS) uses a targeted approach with less side effects than WBRT. SRS requires precise identification and delineation of BM. While artificial intelligence (AI) algorithms have been developed for this, their clinical adoption is limited due to poor model performance in the clinical setting. The limitations of algorithms are often due to the quality of datasets used for training the AI network. The purpose of this study was to create a large, heterogenous, annotated BM dataset for training and validation of AI models. We present a BM dataset of 200 patients with pretreatment T1, T1 post-contrast, T2, and FLAIR MR images. The dataset includes contrast-enhancing and necrotic 3D segmentations on T1 post-contrast and peritumoral edema 3D segmentations on FLAIR. Our dataset contains 975 contrast-enhancing lesions, many of which are sub centimeter, along with clinical and imaging information. We used a streamlined approach to database-building through a PACS-integrated segmentation workflow.


Asunto(s)
Neoplasias Encefálicas , Humanos , Inteligencia Artificial , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Irradiación Craneana/efectos adversos , Irradiación Craneana/métodos , Imagen por Resonancia Magnética , Radiocirugia
3.
Neurooncol Adv ; 6(1): vdad172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38221978

RESUMEN

Background: Although response in pediatric low-grade glioma (pLGG) includes volumetric assessment, more simplified 2D-based methods are often used in clinical trials. The study's purpose was to compare volumetric to 2D methods. Methods: An expert neuroradiologist performed solid and whole tumor (including cyst and edema) volumetric measurements on MR images using a PACS-based manual segmentation tool in 43 pLGG participants (213 total follow-up images) from the Pacific Pediatric Neuro-Oncology Consortium (PNOC-001) trial. Classification based on changes in volumetric and 2D measurements of solid tumor were compared to neuroradiologist visual response assessment using the Brain Tumor Reporting and Data System (BT-RADS) criteria for a subset of 65 images using receiver operating characteristic (ROC) analysis. Longitudinal modeling of solid tumor volume was used to predict BT-RADS classification in 54 of the 65 images. Results: There was a significant difference in ROC area under the curve between 3D solid tumor volume and 2D area (0.96 vs 0.78, P = .005) and between 3D solid and 3D whole volume (0.96 vs 0.84, P = .006) when classifying BT-RADS progressive disease (PD). Thresholds of 15-25% increase in 3D solid tumor volume had an 80% sensitivity in classifying BT-RADS PD included in their 95% confidence intervals. The longitudinal model of solid volume response had a sensitivity of 82% and a positive predictive value of 67% for detecting BT-RADS PD. Conclusions: Volumetric analysis of solid tumor was significantly better than 2D measurements in classifying tumor progression as determined by BT-RADS criteria and will enable more comprehensive clinical management.

4.
Sci Rep ; 13(1): 22942, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135704

RESUMEN

Gliomas with CDKN2A mutations are known to have worse prognosis but imaging features of these gliomas are unknown. Our goal is to identify CDKN2A specific qualitative imaging biomarkers in glioblastomas using a new informatics workflow that enables rapid analysis of qualitative imaging features with Visually AcceSAble Rembrandtr Images (VASARI) for large datasets in PACS. Sixty nine patients undergoing GBM resection with CDKN2A status determined by whole-exome sequencing were included. GBMs on magnetic resonance images were automatically 3D segmented using deep learning algorithms incorporated within PACS. VASARI features were assessed using FHIR forms integrated within PACS. GBMs without CDKN2A alterations were significantly larger (64 vs. 30%, p = 0.007) compared to tumors with homozygous deletion (HOMDEL) and heterozygous loss (HETLOSS). Lesions larger than 8 cm were four times more likely to have no CDKN2A alteration (OR: 4.3; 95% CI 1.5-12.1; p < 0.001). We developed a novel integrated PACS informatics platform for the assessment of GBM molecular subtypes and show that tumors with HOMDEL are more likely to have radiographic evidence of pial invasion and less likely to have deep white matter invasion or subependymal invasion. These imaging features may allow noninvasive identification of CDKN2A allele status.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Homocigoto , Eliminación de Secuencia , Glioma/patología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Informática , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Mutación
5.
ArXiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37744461

RESUMEN

Resection and whole brain radiotherapy (WBRT) are the standards of care for the treatment of patients with brain metastases (BM) but are often associated with cognitive side effects. Stereotactic radiosurgery (SRS) involves a more targeted treatment approach and has been shown to avoid the side effects associated with WBRT. However, SRS requires precise identification and delineation of BM. While many AI algorithms have been developed for this purpose, their clinical adoption has been limited due to poor model performance in the clinical setting. Major reasons for non-generalizable algorithms are the limitations in the datasets used for training the AI network. The purpose of this study was to create a large, heterogenous, annotated BM dataset for training and validation of AI models to improve generalizability. We present a BM dataset of 200 patients with pretreatment T1, T1 post-contrast, T2, and FLAIR MR images. The dataset includes contrast-enhancing and necrotic 3D segmentations on T1 post-contrast and whole tumor (including peritumoral edema) 3D segmentations on FLAIR. Our dataset contains 975 contrast-enhancing lesions, many of which are sub centimeter, along with clinical and imaging feature information. We used a streamlined approach to database-building leveraging a PACS-integrated segmentation workflow.

6.
AJNR Am J Neuroradiol ; 44(10): 1126-1134, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37770204

RESUMEN

BACKGROUND: The molecular profile of gliomas is a prognostic indicator for survival, driving clinical decision-making for treatment. Pathology-based molecular diagnosis is challenging because of the invasiveness of the procedure, exclusion from neoadjuvant therapy options, and the heterogeneous nature of the tumor. PURPOSE: We performed a systematic review of algorithms that predict molecular subtypes of gliomas from MR Imaging. DATA SOURCES: Data sources were Ovid Embase, Ovid MEDLINE, Cochrane Central Register of Controlled Trials, Web of Science. STUDY SELECTION: Per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 12,318 abstracts were screened and 1323 underwent full-text review, with 85 articles meeting the inclusion criteria. DATA ANALYSIS: We compared prediction results from different machine learning approaches for predicting molecular subtypes of gliomas. Bias analysis was conducted for each study, following the Prediction model Risk Of Bias Assessment Tool (PROBAST) guidelines. DATA SYNTHESIS: Isocitrate dehydrogenase mutation status was reported with an area under the curve and accuracy of 0.88 and 85% in internal validation and 0.86 and 87% in limited external validation data sets, respectively. For the prediction of O6-methylguanine-DNA methyltransferase promoter methylation, the area under the curve and accuracy in internal validation data sets were 0.79 and 77%, and in limited external validation, 0.89 and 83%, respectively. PROBAST scoring demonstrated high bias in all articles. LIMITATIONS: The low number of external validation and studies with incomplete data resulted in unequal data analysis. Comparing the best prediction pipelines of each study may introduce bias. CONCLUSIONS: While the high area under the curve and accuracy for the prediction of molecular subtypes of gliomas are reported in internal and external validation data sets, limited use of external validation and the increased risk of bias in all articles may present obstacles for clinical translation of these techniques.


Asunto(s)
Glioma , Humanos , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/terapia , Aprendizaje Automático , Pronóstico , Imagen por Resonancia Magnética/métodos , Mutación
7.
ArXiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37396600

RESUMEN

Clinical monitoring of metastatic disease to the brain can be a laborious and timeconsuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.

8.
Front Neurosci ; 16: 860208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312024

RESUMEN

Purpose: Personalized interpretation of medical images is critical for optimum patient care, but current tools available to physicians to perform quantitative analysis of patient's medical images in real time are significantly limited. In this work, we describe a novel platform within PACS for volumetric analysis of images and thus development of large expert annotated datasets in parallel with radiologist performing the reading that are critically needed for development of clinically meaningful AI algorithms. Specifically, we implemented a deep learning-based algorithm for automated brain tumor segmentation and radiomics extraction, and embedded it into PACS to accelerate a supervised, end-to- end workflow for image annotation and radiomic feature extraction. Materials and methods: An algorithm was trained to segment whole primary brain tumors on FLAIR images from multi-institutional glioma BraTS 2021 dataset. Algorithm was validated using internal dataset from Yale New Haven Health (YHHH) and compared (by Dice similarity coefficient [DSC]) to radiologist manual segmentation. A UNETR deep-learning was embedded into Visage 7 (Visage Imaging, Inc., San Diego, CA, United States) diagnostic workstation. The automatically segmented brain tumor was pliable for manual modification. PyRadiomics (Harvard Medical School, Boston, MA) was natively embedded into Visage 7 for feature extraction from the brain tumor segmentations. Results: UNETR brain tumor segmentation took on average 4 s and the median DSC was 86%, which is similar to published literature but lower than the RSNA ASNR MICCAI BRATS challenge 2021. Finally, extraction of 106 radiomic features within PACS took on average 5.8 ± 0.01 s. The extracted radiomic features did not vary over time of extraction or whether they were extracted within PACS or outside of PACS. The ability to perform segmentation and feature extraction before radiologist opens the study was made available in the workflow. Opening the study in PACS, allows the radiologists to verify the segmentation and thus annotate the study. Conclusion: Integration of image processing algorithms for tumor auto-segmentation and feature extraction into PACS allows curation of large datasets of annotated medical images and can accelerate translation of research into development of personalized medicine applications in the clinic. The ability to use familiar clinical tools to revise the AI segmentations and natively embedding the segmentation and radiomic feature extraction tools on the diagnostic workstation accelerates the process to generate ground-truth data.

9.
Neurooncol Adv ; 4(1): vdac093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36071926

RESUMEN

Background: While there are innumerable machine learning (ML) research algorithms used for segmentation of gliomas, there is yet to be a US FDA cleared product. The aim of this study is to explore the systemic limitations of research algorithms that have prevented translation from concept to product by a review of the current research literature. Methods: We performed a systematic literature review on 4 databases. Of 11 727 articles, 58 articles met the inclusion criteria and were used for data extraction and screening using TRIPOD. Results: We found that while many articles were published on ML-based glioma segmentation and report high accuracy results, there were substantial limitations in the methods and results portions of the papers that result in difficulty reproducing the methods and translation into clinical practice. Conclusions: In addition, we identified that more than a third of the articles used the same publicly available BRaTS and TCIA datasets and are responsible for the majority of patient data on which ML algorithms were trained, which leads to limited generalizability and potential for overfitting and bias.

10.
Neurooncol Adv ; 4(1): vdac116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36043121

RESUMEN

Background: Treatment of brain metastases can be tailored to individual lesions with treatments such as stereotactic radiosurgery. Accurate surveillance of lesions is a prerequisite but challenging in patients with multiple lesions and prior imaging studies, in a process that is laborious and time consuming. We aimed to longitudinally track several lesions using a PACS-integrated lesion tracking tool (LTT) to evaluate the efficiency of a PACS-integrated lesion tracking workflow, and characterize the prevalence of heterogenous response (HeR) to treatment after Gamma Knife (GK). Methods: We selected a group of brain metastases patients treated with GK at our institution. We used a PACS-integrated LTT to track the treatment response of each lesion after first GK intervention to maximally seven diagnostic follow-up scans. We evaluated the efficiency of this tool by comparing the number of clicks necessary to complete this task with and without the tool and examined the prevalence of HeR in treatment. Results: A cohort of eighty patients was selected and 494 lesions were measured and tracked longitudinally for a mean follow-up time of 374 days after first GK. Use of LTT significantly decreased number of necessary clicks. 81.7% of patients had HeR to treatment at the end of follow-up. The prevalence increased with increasing number of lesions. Conclusions: Lesions in a single patient often differ in their response to treatment, highlighting the importance of individual lesion size assessments for further treatment planning. PACS-integrated lesion tracking enables efficient lesion surveillance workflow and specific and objective result reports to treating clinicians.

11.
Cancers (Basel) ; 14(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35681603

RESUMEN

Technological innovation has enabled the development of machine learning (ML) tools that aim to improve the practice of radiologists. In the last decade, ML applications to neuro-oncology have expanded significantly, with the pre-operative prediction of glioma grade using medical imaging as a specific area of interest. We introduce the subject of ML models for glioma grade prediction by remarking upon the models reported in the literature as well as by describing their characteristic developmental workflow and widely used classifier algorithms. The challenges facing these models-including data sources, external validation, and glioma grade classification methods -are highlighted. We also discuss the quality of how these models are reported, explore the present and future of reporting guidelines and risk of bias tools, and provide suggestions for the reporting of prospective works. Finally, this review offers insights into next steps that the field of ML glioma grade prediction can take to facilitate clinical implementation.

12.
Front Oncol ; 12: 856231, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530302

RESUMEN

Objectives: To systematically review, assess the reporting quality of, and discuss improvement opportunities for studies describing machine learning (ML) models for glioma grade prediction. Methods: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy (PRISMA-DTA) statement. A systematic search was performed in September 2020, and repeated in January 2021, on four databases: Embase, Medline, CENTRAL, and Web of Science Core Collection. Publications were screened in Covidence, and reporting quality was measured against the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement. Descriptive statistics were calculated using GraphPad Prism 9. Results: The search identified 11,727 candidate articles with 1,135 articles undergoing full text review and 85 included in analysis. 67 (79%) articles were published between 2018-2021. The mean prediction accuracy of the best performing model in each study was 0.89 ± 0.09. The most common algorithm for conventional machine learning studies was Support Vector Machine (mean accuracy: 0.90 ± 0.07) and for deep learning studies was Convolutional Neural Network (mean accuracy: 0.91 ± 0.10). Only one study used both a large training dataset (n>200) and external validation (accuracy: 0.72) for their model. The mean adherence rate to TRIPOD was 44.5% ± 11.1%, with poor reporting adherence for model performance (0%), abstracts (0%), and titles (0%). Conclusions: The application of ML to glioma grade prediction has grown substantially, with ML model studies reporting high predictive accuracies but lacking essential metrics and characteristics for assessing model performance. Several domains, including generalizability and reproducibility, warrant further attention to enable translation into clinical practice. Systematic Review Registration: PROSPERO, identifier CRD42020209938.

13.
Cancers (Basel) ; 14(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326526

RESUMEN

Glioma and brain metastasis can be difficult to distinguish on conventional magnetic resonance imaging (MRI) due to the similarity of imaging features in specific clinical circumstances. Multiple studies have investigated the use of machine learning (ML) models for non-invasive differentiation of glioma from brain metastasis. Many of the studies report promising classification results, however, to date, none have been implemented into clinical practice. After a screening of 12,470 studies, we included 29 eligible studies in our systematic review. From each study, we aggregated data on model design, development, and best classifiers, as well as quality of reporting according to the TRIPOD statement. In a subset of eligible studies, we conducted a meta-analysis of the reported AUC. It was found that data predominantly originated from single-center institutions (n = 25/29) and only two studies performed external validation. The median TRIPOD adherence was 0.48, indicating insufficient quality of reporting among surveyed studies. Our findings illustrate that despite promising classification results, reliable model assessment is limited by poor reporting of study design and lack of algorithm validation and generalizability. Therefore, adherence to quality guidelines and validation on outside datasets is critical for the clinical translation of ML for the differentiation of glioma and brain metastasis.

14.
Radiat Oncol ; 16(1): 74, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863358

RESUMEN

OBJECTIVES: To generate and validate state-of-the-art radiomics models for prediction of radiation-induced lung injury and oncologic outcome in non-small cell lung cancer (NSCLC) patients treated with robotic stereotactic body radiation therapy (SBRT). METHODS: Radiomics models were generated from the planning CT images of 110 patients with primary, inoperable stage I/IIa NSCLC who were treated with robotic SBRT using a risk-adapted fractionation scheme at the University Hospital Cologne (training cohort). In total, 199 uncorrelated radiomic features fulfilling the standards of the Image Biomarker Standardization Initiative (IBSI) were extracted from the outlined gross tumor volume (GTV). Regularized models (Coxnet and Gradient Boost) for the development of local lung fibrosis (LF), local tumor control (LC), disease-free survival (DFS) and overall survival (OS) were built from either clinical/ dosimetric variables, radiomics features or a combination thereof and validated in a comparable cohort of 71 patients treated by robotic SBRT at the Radiosurgery Center in Northern Germany (test cohort). RESULTS: Oncologic outcome did not differ significantly between the two cohorts (OS at 36 months 56% vs. 43%, p = 0.065; median DFS 25 months vs. 23 months, p = 0.43; LC at 36 months 90% vs. 93%, p = 0.197). Local lung fibrosis developed in 33% vs. 35% of the patients (p = 0.75), all events were observed within 36 months. In the training cohort, radiomics models were able to predict OS, DFS and LC (concordance index 0.77-0.99, p < 0.005), but failed to generalize to the test cohort. In opposite, models for the development of lung fibrosis could be generated from both clinical/dosimetric factors and radiomic features or combinations thereof, which were both predictive in the training set (concordance index 0.71- 0.79, p < 0.005) and in the test set (concordance index 0.59-0.66, p < 0.05). The best performing model included 4 clinical/dosimetric variables (GTV-Dmean, PTV-D95%, Lung-D1ml, age) and 7 radiomic features (concordance index 0.66, p < 0.03). CONCLUSION: Despite the obvious difficulties in generalizing predictive models for oncologic outcome and toxicity, this analysis shows that carefully designed radiomics models for prediction of local lung fibrosis after SBRT of early stage lung cancer perform well across different institutions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Lesión Pulmonar/etiología , Neoplasias Pulmonares/radioterapia , Traumatismos por Radiación/etiología , Radiometría/métodos , Radiocirugia/métodos , Anciano , Anciano de 80 o más Años , Supervivencia sin Enfermedad , Fraccionamiento de la Dosis de Radiación , Femenino , Humanos , Estimación de Kaplan-Meier , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Fibrosis Pulmonar/etiología , Estudios Retrospectivos , Robótica , Resultado del Tratamiento
15.
Cancers (Basel) ; 13(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562803

RESUMEN

Amino acid PET using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) has attracted considerable interest in neurooncology. Furthermore, initial studies suggested the additional diagnostic value of FET PET radiomics in brain tumor patient management. However, the conclusiveness of radiomics models strongly depends on feature generalizability. We here evaluated the repeatability of feature-based FET PET radiomics. A test-retest analysis based on equivalent but statistically independent subsamples of FET PET images was performed in 50 newly diagnosed and histomolecularly characterized glioma patients. A total of 1,302 radiomics features were calculated from semi-automatically segmented tumor volumes-of-interest (VOIs). Furthermore, to investigate the influence of the spatial resolution of PET on repeatability, spherical VOIs of different sizes were positioned in the tumor and healthy brain tissue. Feature repeatability was assessed by calculating the intraclass correlation coefficient (ICC). To further investigate the influence of the isocitrate dehydrogenase (IDH) genotype on feature repeatability, a hierarchical cluster analysis was performed. For tumor VOIs, 73% of first-order features and 71% of features extracted from the gray level co-occurrence matrix showed high repeatability (ICC 95% confidence interval, 0.91-1.00). In the largest spherical tumor VOIs, 67% of features showed high repeatability, significantly decreasing towards smaller VOIs. The IDH genotype did not affect feature repeatability. Based on 297 repeatable features, two clusters were identified separating patients with IDH-wildtype glioma from those with an IDH mutation. Our results suggest that robust features can be obtained from routinely acquired FET PET scans, which are valuable for further standardization of radiomics analyses in neurooncology.

16.
Abdom Radiol (NY) ; 46(1): 216-225, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32500237

RESUMEN

PURPOSE: Liver Imaging Reporting and Data System (LI-RADS) uses multiphasic contrast-enhanced imaging for hepatocellular carcinoma (HCC) diagnosis. The goal of this feasibility study was to establish a proof-of-principle concept towards automating the application of LI-RADS, using a deep learning algorithm trained to segment the liver and delineate HCCs on MRI automatically. METHODS: In this retrospective single-center study, multiphasic contrast-enhanced MRIs using T1-weighted breath-hold sequences acquired from 2010 to 2018 were used to train a deep convolutional neural network (DCNN) with a U-Net architecture. The U-Net was trained (using 70% of all data), validated (15%) and tested (15%) on 174 patients with 231 lesions. Manual 3D segmentations of the liver and HCC were ground truth. The dice similarity coefficient (DSC) was measured between manual and DCNN methods. Postprocessing using a random forest (RF) classifier employing radiomic features and thresholding (TR) of the mean neural activation was used to reduce the average false positive rate (AFPR). RESULTS: 73 and 75% of HCCs were detected on validation and test sets, respectively, using > 0.2 DSC criterion between individual lesions and their corresponding segmentations. Validation set AFPRs were 2.81, 0.77, 0.85 for U-Net, U-Net + RF, and U-Net + TR, respectively. Combining both RF and TR with the U-Net improved the AFPR to 0.62 and 0.75 for the validation and test sets, respectively. Mean DSC between automatically detected lesions using the DCNN + RF + TR and corresponding manual segmentations was 0.64/0.68 (validation/test), and 0.91/0.91 for liver segmentations. CONCLUSION: Our DCNN approach can segment the liver and HCCs automatically. This could enable a more workflow efficient and clinically realistic implementation of LI-RADS.


Asunto(s)
Carcinoma Hepatocelular , Aprendizaje Profundo , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Retrospectivos
17.
Eur Radiol ; 31(5): 3002-3014, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33063185

RESUMEN

OBJECTIVES: To evaluate the prognostic potential of Lipiodol distribution for the pharmacokinetic (PK) profiles of doxorubicin (DOX) and doxorubicinol (DOXOL) after conventional transarterial chemoembolization (cTACE). METHODS: This prospective clinical trial ( ClinicalTrials.gov : NCT02753881) included 30 consecutive participants with liver malignancies treated with cTACE (5/2016-10/2018) using 50 mg DOX/10 mg mitomycin C emulsified 1:2 with ethiodized oil (Lipiodol). Peripheral blood was sampled at 10 timepoints for standard non-compartmental analysis of peak concentrations (Cmax) and area under the curve (AUC) with dose normalization (DN). Imaging markers included Lipiodol distribution on post-cTACE CT for patient stratification into 1 segment (n = 10), ≥ 2 segments (n = 10), and lobar cTACE (n = 10), and baseline enhancing tumor volume (ETV). Adverse events (AEs) and tumor response on MRI were recorded 3-4 weeks post-cTACE. Statistics included repeated measurement ANOVA (RM-ANOVA), Mann-Whitney, Kruskal-Wallis, Fisher's exact test, and Pearson correlation. RESULTS: Hepatocellular (n = 26), cholangiocarcinoma (n = 1), and neuroendocrine metastases (n = 3) were included. Stratified according to Lipiodol distribution, DOX-Cmax increased from 1 segment (DOX-Cmax, 83.94 ± 75.09 ng/mL; DN-DOX-Cmax, 2.67 ± 2.02 ng/mL/mg) to ≥ 2 segments (DOX-Cmax, 139.66 ± 117.73 ng/mL; DN-DOX-Cmax, 3.68 ± 4.20 ng/mL/mg) to lobar distribution (DOX-Cmax, 334.35 ± 215.18 ng/mL; DN-DOX-Cmax, 7.11 ± 4.24 ng/mL/mg; p = 0.036). While differences in DN-DOX-AUC remained insignificant, RM-ANOVA revealed significant separation of time concentration curves for DOX (p = 0.023) and DOXOL (p = 0.041) comparing 1, ≥ 2 segments, and lobar cTACE. Additional indicators of higher DN-DOX-Cmax were high ETV (p = 0.047) and Child-Pugh B (p = 0.009). High ETV and tumoral Lipiodol coverage also correlated with tumor response. AE occurred less frequently after segmental cTACE. CONCLUSIONS: This prospective clinical trial provides updated PK data revealing Lipiodol distribution as an imaging marker predictive of DOX-Cmax and tumor response after cTACE in liver cancer. KEY POINTS: • Prospective pharmacokinetic analysis after conventional TACE revealed Lipiodol distribution (1 vs. ≥ 2 segments vs. lobar) as an imaging marker predictive of doxorubicin peak concentrations (Cmax). • Child-Pugh B class and tumor hypervascularization, measurable as enhancing tumor volume (ETV) at baseline, were identified as additional predictors for higher dose-normalized doxorubicin Cmax after conventional TACE. • ETV at baseline and tumoral Lipiodol coverage can serve as predictors of volumetric tumor response after conventional TACE according to quantitative European Association for the Study of the Liver (qEASL) criteria.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/tratamiento farmacológico , Doxorrubicina , Aceite Etiodizado , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Estudios Prospectivos , Resultado del Tratamiento
18.
Strahlenther Onkol ; 196(10): 848-855, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32647917

RESUMEN

Over the past years, the quantity and complexity of imaging data available for the clinical management of patients with solid tumors has increased substantially. Without the support of methods from the field of artificial intelligence (AI) and machine learning, a complete evaluation of the available image information is hardly feasible in clinical routine. Especially in radiotherapy planning, manual detection and segmentation of lesions is laborious, time consuming, and shows significant variability among observers. Here, AI already offers techniques to support radiation oncologists, whereby ultimately, the productivity and the quality are increased, potentially leading to an improved patient outcome. Besides detection and segmentation of lesions, AI allows the extraction of a vast number of quantitative imaging features from structural or functional imaging data that are typically not accessible by means of human perception. These features can be used alone or in combination with other clinical parameters to generate mathematical models that allow, for example, prediction of the response to radiotherapy. Within the large field of AI, radiomics is the subdiscipline that deals with the extraction of quantitative image features as well as the generation of predictive or prognostic mathematical models. This review gives an overview of the basics, methods, and limitations of radiomics, with a focus on patients with brain tumors treated by radiation therapy.


Asunto(s)
Inteligencia Artificial , Neoplasias Encefálicas/diagnóstico por imagen , Biología Computacional , Procesamiento de Imagen Asistido por Computador/métodos , Oncología por Radiación/métodos , Neoplasias Encefálicas/radioterapia , Conjuntos de Datos como Asunto , Aprendizaje Profundo , Humanos , Imagenología Tridimensional , Neuroimagen , Oncología por Radiación/tendencias , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Flujo de Trabajo
19.
Eur J Radiol ; 130: 109153, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32717577

RESUMEN

PURPOSE: Aim of this study was to develop and evaluate a software toolkit, which allows for a fully automated body composition analysis in contrast enhanced abdominal computed tomography leveraging the strengths of both, quantitative information from dual energy computed tomography and simple detection and segmentation tasks performed by deep convolutional neuronal networks (DCNN). METHODS AND MATERIALS: Both, public and private datasets were used to train and validate DCNN. A combination of two DCNN and quantitative thresholding was used to classify axial CT slices to the abdominal region, classify voxels as fat and muscle and to differentiate between subcutaneous and visceral fat. For validation, patients undergoing repetitive examination (±21 days) and patients who underwent concurrent bioelectrical impedance analysis (BIA) were analyzed. Concordance correlation coefficient (CCC), linear regression and Bland-Altman-Analysis were used as statistical tests. RESULTS: Results provided from the algorithm toolkit were visually validated. The automated classifier was able to extract slices of interest from the full body scans with an accuracy of 98.7 %. DCNN-based segmentation for subcutaneous fat reached a mean dice similarity coefficient of 0.95. CCCs were 0.99 for both muscle and subcutaneous fat and 0.98 for visceral fat in patients undergoing repetitive examinations (n = 48). Further linear regression and Bland-Altman-Analyses suggested good agreement (r2:0.67-0.88) between the software toolkit and patients who underwent concurrent BIA (n = 39). CONCLUSION: We describe a software toolkit allowing for an accurate analysis of body composition utilizing a combination of DCNN- and threshold-based segmentations from spectral detector computed tomography.


Asunto(s)
Composición Corporal , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Femenino , Humanos , Grasa Intraabdominal/anatomía & histología , Modelos Lineales , Masculino , Persona de Mediana Edad , Músculo Esquelético/anatomía & histología , Sistemas de Información Radiológica , Reproducibilidad de los Resultados , Estudios Retrospectivos , Grasa Subcutánea/anatomía & histología
20.
Eur Radiol ; 30(10): 5663-5673, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32424595

RESUMEN

OBJECTIVES: To investigate the predictive value of quantifiable imaging and inflammatory biomarkers in patients with hepatocellular carcinoma (HCC) for the clinical outcome after drug-eluting bead transarterial chemoembolization (DEB-TACE) measured as volumetric tumor response and progression-free survival (PFS). METHODS: This retrospective study included 46 patients with treatment-naïve HCC who received DEB-TACE. Laboratory work-up prior to treatment included complete and differential blood count, liver function, and alpha-fetoprotein levels. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were correlated with radiomic features extracted from pretreatment contrast-enhanced magnetic resonance imaging (MRI) and with tumor response according to quantitative European Association for the Study of the Liver (qEASL) criteria and progression-free survival (PFS) after DEB-TACE. Radiomic features included single nodular tumor growth measured as sphericity, dynamic contrast uptake behavior, arterial hyperenhancement, and homogeneity of contrast uptake. Statistics included univariate and multivariate linear regression, Cox regression, and Kaplan-Meier analysis. RESULTS: Accounting for laboratory and clinical parameters, high baseline NLR and PLR were predictive of poorer tumor response (p = 0.014 and p = 0.004) and shorter PFS (p = 0.002 and p < 0.001). When compared to baseline imaging, high NLR and PLR correlated with non-spherical tumor growth (p = 0.001 and p < 0.001). CONCLUSIONS: This study establishes the prognostic value of quantitative inflammatory biomarkers associated with aggressive non-spherical tumor growth and predictive of poorer tumor response and shorter PFS after DEB-TACE. KEY POINTS: • In treatment-naïve hepatocellular carcinoma (HCC), high baseline platelet-to-lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio (NLR) are associated with non-nodular tumor growth measured as low tumor sphericity. • High PLR and NLR are predictive of poorer volumetric enhancement-based tumor response and PFS after DEB-TACE in HCC. • This set of readily available, quantitative immunologic biomarkers can easily be implemented in clinical guidelines providing a paradigm to guide and monitor the personalized application of loco-regional therapies in HCC.


Asunto(s)
Plaquetas/citología , Carcinoma Hepatocelular/terapia , Quimioembolización Terapéutica , Neoplasias Hepáticas/terapia , Linfocitos/citología , Neutrófilos/citología , Anciano , Carcinoma Hepatocelular/sangre , Femenino , Humanos , Inflamación , Estimación de Kaplan-Meier , Neoplasias Hepáticas/sangre , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Supervivencia sin Progresión , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...