Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Genet Sel Evol ; 56(1): 39, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773368

RESUMEN

BACKGROUND: Nine male and eight female calves born to a Normande artificial insemination bull named "Ly" were referred to the French National Observatory of Bovine Abnormalities for multiple fractures, shortened gestation, and stillbirth or perinatal mortality. RESULTS: Using Illumina BovineSNP50 array genotypes from affected calves and 84 half-sib controls, the associated locus was mapped to a 6.5-Mb interval on chromosome 19, assuming autosomal inheritance with germline mosaicism. Subsequent comparison of the whole-genome sequences of one case and 5116 control genomes, followed by genotyping in the affected pedigree, identified a de novo missense substitution within the NC1 domain of the COL1A1 gene (Chr19 g.36,473,965G > A; p.D1412N) as unique candidate variant. Interestingly, the affected residue was completely conserved among 243 vertebrate orthologs, and the same substitution in humans has been reported to cause type II osteogenesis imperfecta (OI), a connective tissue disorder that is characterized primarily by bone deformity and fragility. Moreover, three COL1A1 mutations have been described to cause the same syndrome in cattle. Necropsy, computed tomography, radiology, and histology confirmed the diagnosis of type II OI, further supporting the causality of this variant. In addition, a detailed analysis of gestation length and perinatal mortality in 1387 offspring of Ly and more than 160,000 progeny of 63 control bulls allowed us to statistically confirm in a large pedigree the association between type II OI and preterm delivery, which is probably due to premature rupture of fetal membranes and has been reported in several isolated cases of type II OI in humans and cattle. Finally, analysis of perinatal mortality rates and segregation distortion supported a low level of germ cell mosaicism in Ly, with an estimate of 4.5% to 7.7% of mutant sperm and thus 63 to 107 affected calves born. These numbers contrast with the 17 cases reported and raise concerns about the underreporting of congenital defects to heredo-surveillance platforms, even for textbook genetic syndromes. CONCLUSIONS: In conclusion, we describe a large animal model for a recurrent substitution in COL1A1 that is responsible for type II OI in humans. More generally, this study highlights the utility of such datasets and large half-sib families available in livestock species to characterize sporadic genetic defects.


Asunto(s)
Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo I , Mutación Missense , Osteogénesis Imperfecta , Animales , Bovinos/genética , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/veterinaria , Colágeno Tipo I/genética , Masculino , Femenino , Enfermedades de los Bovinos/genética , Nacimiento Prematuro/genética , Nacimiento Prematuro/veterinaria , Linaje , Embarazo
3.
Genet Sel Evol ; 55(1): 70, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828440

RESUMEN

BACKGROUND: Combining the results of within-population genome-wide association studies (GWAS) based on whole-genome sequences into a single meta-analysis (MA) is an accurate and powerful method for identifying variants associated with complex traits. As part of the H2020 BovReg project, we performed sequence-level MA for beef production traits. Five partners from France, Switzerland, Germany, and Canada contributed summary statistics from sequence-based GWAS conducted with 54,782 animals from 15 purebred or crossbred populations. We combined the summary statistics for four growth, nine morphology, and 15 carcass traits into 16 MA, using both fixed effects and z-score methods. RESULTS: The fixed-effects method was generally more informative to provide indication on potentially causal variants, although we combined substantially different traits in each MA. In comparison with within-population GWAS, this approach highlighted (i) a larger number of quantitative trait loci (QTL), (ii) QTL more frequently located in genomic regions known for their effects on growth and meat/carcass traits, (iii) a smaller number of genomic variants within the QTL, and (iv) candidate variants that were more frequently located in genes. MA pinpointed variants in genes, including MSTN, LCORL, and PLAG1 that have been previously associated with morphology and carcass traits. We also identified dozens of other variants located in genes associated with growth and carcass traits, or with a function that may be related to meat production (e.g., HS6ST1, HERC2, WDR75, COL3A1, SLIT2, MED28, and ANKAR). Some of these variants overlapped with expression or splicing QTL reported in the cattle Genotype-Tissue Expression atlas (CattleGTEx) and could therefore regulate gene expression. CONCLUSIONS: By identifying candidate genes and potential causal variants associated with beef production traits in cattle, MA demonstrates great potential for investigating the biological mechanisms underlying these traits. As a complement to within-population GWAS, this approach can provide deeper insights into the genetic architecture of complex traits in beef cattle.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Bovinos/genética , Animales , Fenotipo , Carne/análisis , Genómica , Polimorfismo de Nucleótido Simple
4.
Sci Rep ; 13(1): 12155, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500674

RESUMEN

The Creole cattle from Guadeloupe (GUA) are well adapted to the tropical environment. Its admixed genome likely played an important role in such adaptation. Here, we sought to detect genomic signatures of selection in the GUA genome. For this purpose, we sequenced 23 GUA individuals and combined our data with sequenced genomes of 99 animals representative of European, African and indicine groups. We detect 17,228,983 single nucleotide polymorphisms (SNPs) in the GUA genome, providing the most detailed exploration, to date, of patterns of genetic variation in this breed. We confirm the higher level of African and indicine ancestries, compared to the European ancestry and we highlight the African origin of indicine ancestry in the GUA genome. We identify five strong candidate regions showing an excess of indicine ancestry and consistently supported across the different detection methods. These regions encompass genes with adaptive roles in relation to immunity, thermotolerance and physical activity. We confirmed a previously identified horn-related gene, RXFP2, as a gene under strong selective pressure in the GUA population likely owing to human-driven (socio-cultural) pressure. Findings from this study provide insight into the genetic mechanisms associated with resilience traits in livestock.


Asunto(s)
Genoma , Selección Genética , Animales , Bovinos/genética , Genómica/métodos , Genotipo , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma/veterinaria
5.
Sci Data ; 10(1): 369, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291142

RESUMEN

Inspired by the production of reference data sets in the Genome in a Bottle project, we sequenced one Charolais heifer with different technologies: Illumina paired-end, Oxford Nanopore, Pacific Biosciences (HiFi and CLR), 10X Genomics linked-reads, and Hi-C. In order to generate haplotypic assemblies, we also sequenced both parents with short reads. From these data, we built two haplotyped trio high quality reference genomes and a consensus assembly, using up-to-date software packages. The assemblies obtained using PacBio HiFi reaches a size of 3.2 Gb, which is significantly larger than the 2.7 Gb ARS-UCD1.2 reference. The BUSCO score of the consensus assembly reaches a completeness of 95.8%, among highly conserved mammal genes. We also identified 35,866 structural variants larger than 50 base pairs. This assembly is a contribution to the bovine pangenome for the "Charolais" breed. These datasets will prove to be useful resources enabling the community to gain additional insight on sequencing technologies for applications such as SNP, indel or structural variant calling, and de novo assembly.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Bovinos , Femenino , Benchmarking , Genoma , Análisis de Secuencia de ADN
6.
Genet Sel Evol ; 55(1): 40, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308849

RESUMEN

BACKGROUND: Inherited epidermolysis bullosa (EB) is a group of painful and life-threatening genetic disorders that are characterized by mechanically induced blistering of the skin and mucous membranes. Congenital skin fragility resembling EB was recently reported in three Charolais calves born in two distinct herds from unaffected parents. Phenotypic and genetic analyses were carried out to describe this condition and its molecular etiology. RESULTS: Genealogical, pathological and histological investigations confirmed the diagnosis of recessive EB. However, the affected calves showed milder clinical signs compared to another form of EB, which was previously reported in the same breed and is caused by a homozygous deletion of the ITGB4 gene. Homozygosity mapping followed by analysis of the whole-genome sequences of two cases and 5031 control individuals enabled us to prioritize a splice donor site of ITGA6 (c.2160 + 1G > T; Chr2 g.24112740C > A) as the most compelling candidate variant. This substitution showed a perfect genotype-phenotype correlation in the two affected pedigrees and was found to segregate only in Charolais, and at a very low frequency (f = 1.6 × 10-4) after genotyping 186,154 animals from 15 breeds. Finally, RT-PCR analyses revealed increased retention of introns 14 and 15 of the ITGA6 gene in a heterozygous mutant cow compared with a matched control. The mutant mRNA is predicted to cause a frameshift (ITGA6 p.I657Mfs1) that affects the assembly of the integrin α6ß4 dimer and its correct anchoring to the cell membrane. This dimer is a key component of the hemidesmosome anchoring complex, which ensures the attachment of basal epithelial cells to the basal membrane. Based on these elements, we arrived at a diagnosis of junctional EB. CONCLUSIONS: We report a rare example of partial phenocopies observed in the same breed and due to mutations that affect two members of the same protein dimer, and provide the first evidence of an ITGA6 mutation that causes EB in livestock species.


Asunto(s)
Epidermólisis Ampollosa de la Unión , Femenino , Bovinos , Animales , Homocigoto , Eliminación de Secuencia , Mutación , Mutación del Sistema de Lectura
7.
BMC Genomics ; 24(1): 338, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337145

RESUMEN

BACKGROUND: The search for quantitative trait loci (QTL) affecting traits of interest in mammals is frequently limited to autosomes, with the X chromosome excluded because of its hemizygosity in males. This study aimed to assess the importance of the X chromosome in the genetic determinism of 11 complex traits related to milk production, milk composition, mastitis resistance, fertility, and stature in 236,496 cows from three major French dairy breeds (Holstein, Montbéliarde, and Normande) and three breeds of regional importance (Abondance, Tarentaise, and Vosgienne). RESULTS: Estimates of the proportions of heritability due to autosomes and X chromosome (h²X) were consistent among breeds. On average over the 11 traits, h²X=0.008 and the X chromosome explained ~ 3.5% of total genetic variance. GWAS was performed within-breed at the sequence level (~ 200,000 genetic variants) and then combined in a meta-analysis. QTL were identified for most breeds and traits analyzed, with the exception of Tarentaise and Vosgienne and two fertility traits. Overall, 3, 74, 59, and 71 QTL were identified in Abondance, Montbéliarde, Normande, and Holstein, respectively, and most were associated with the most-heritable traits (milk traits and stature). The meta-analyses, which assessed a total of 157 QTL for the different traits, highlighted new QTL and refined the positions of some QTL found in the within-breed analyses. Altogether, our analyses identified a number of functional candidate genes, with the most notable being GPC3, MBNL3, HS6ST2, and DMD for dairy traits; TMEM164, ACSL4, ENOX2, HTR2C, AMOT, and IRAK1 for udder health; MAMLD1 and COL4A6 for fertility; and NRK, ESX1, GPR50, GPC3, and GPC4 for stature. CONCLUSIONS: This study demonstrates the importance of the X chromosome in the genetic determinism of complex traits in dairy cattle and highlights new functional candidate genes and variants for these traits. These results could potentially be extended to other species as many X-linked genes are shared among mammals.


Asunto(s)
Genes Ligados a X , Herencia Multifactorial , Femenino , Masculino , Bovinos/genética , Animales , Leche , Sitios de Carácter Cuantitativo , Fenotipo , Mamíferos/genética
8.
Genet Sel Evol ; 54(1): 71, 2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309651

RESUMEN

BACKGROUND: The palate is a structure separating the oral and nasal cavities and its integrity is essential for feeding and breathing. The total or partial opening of the palate is called a cleft palate and is a common malformation in mammals with environmental or hereditary aetiologies. Generally, it compromises life expectancy in the absence of surgical repair. A new form of non-syndromic cleft palate arose recently in Limousine cattle, with animals referred to the French National Observatory of Bovine Abnormalities since 2012. Since the number of affected animals has increased steadily, this study was undertaken to identify the cause of this disease. RESULTS: Based on pedigree analysis, occurrence of cleft palate in Limousine cattle was concordant with an autosomal recessive mode of inheritance. Genotyping of 16 affected animals and homozygosity mapping led to the identification of a single disease-associated haplotype on Bos taurus chromosome (BTA)19. The genome of two affected animals was sequenced, and their sequences were compared to the ARS-UCD1.2 reference genome to identify variants. The likely causal variants were compared to the variant database of the 1000 bull genome project and two fully linked mutations in exon 24 of the MYH3 (myosin heavy chain) gene were detected: a 1-bp non-synonymous substitution (BTA19:g.29609623A>G) and a 11-bp frameshift deletion (BTA19:g.29609605-29609615del). These two mutations were specific to the Limousine breed, with an estimated allele frequency of 2.4% and are predicted to be deleterious. The frameshift leads to a premature termination codon. Accordingly, mRNA and protein analyses in muscles from wild-type and affected animals revealed a decrease in MYH3 expression in affected animals, probably due to mRNA decay, as well as an absence of the MYH3 protein in these animals. MYH3 is mostly expressed in muscles, including craniofacial muscles, during embryogenesis, and its absence may impair palate formation. CONCLUSIONS: We describe a new form of hereditary cleft palate in Limousine cattle. We identified two fully linked and deleterious mutations, ultimately leading to the loss-of-function of the MYH3 protein. The mutations were included on the Illumina EuroG10k v8 and EuroGMD v1 SNP chips and are used to set up a reliable eradication strategy in the French Limousine breed.


Asunto(s)
Fisura del Paladar , Bovinos/genética , Animales , Masculino , Fisura del Paladar/genética , Fisura del Paladar/veterinaria , Linaje , Mutación , Mutación del Sistema de Lectura , Haplotipos , Mamíferos/genética
9.
Clin Epigenetics ; 14(1): 54, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477426

RESUMEN

BACKGROUND: Conflicting results regarding alterations to sperm DNA methylation in cases of spermatogenesis defects, male infertility and poor developmental outcomes have been reported in humans. Bulls used for artificial insemination represent a relevant model in this field, as the broad dissemination of bull semen considerably alleviates confounding factors and enables the precise assessment of male fertility. This study was therefore designed to assess the potential for sperm DNA methylation to predict bull fertility. RESULTS: A unique collection of 100 sperm samples was constituted by pooling 2-5 ejaculates per bull from 100 Montbéliarde bulls of comparable ages, assessed as fertile (n = 57) or subfertile (n = 43) based on non-return rates 56 days after insemination. The DNA methylation profiles of these samples were obtained using reduced representation bisulfite sequencing. After excluding putative sequence polymorphisms, 490 fertility-related differentially methylated cytosines (DMCs) were identified, most of which were hypermethylated in subfertile bulls. Interestingly, 46 genes targeted by DMCs are involved in embryonic and fetal development, sperm function and maturation, or have been related to fertility in genome-wide association studies; five of these were further analyzed by pyrosequencing. In order to evaluate the prognostic value of fertility-related DMCs, the sperm samples were split between training (n = 67) and testing (n = 33) sets. Using a Random Forest approach, a predictive model was built from the methylation values obtained on the training set. The predictive accuracy of this model was 72% on the testing set and 72% on individual ejaculates collected from an independent cohort of 20 bulls. CONCLUSION: This study, conducted on the largest set of bull sperm samples so far examined in epigenetic analyses, demonstrated that the sperm methylome is a valuable source of male fertility biomarkers. The next challenge is to combine these results with other data on the same sperm samples in order to improve the quality of the model and better understand the interplay between DNA methylation and other molecular features in the regulation of fertility. This research may have potential applications in human medicine, where infertility affects the interaction between a male and a female, thus making it difficult to isolate the male factor.


Asunto(s)
Epigenoma , Estudio de Asociación del Genoma Completo , Animales , Bovinos , Metilación de ADN , Femenino , Fertilidad/genética , Inseminación Artificial/veterinaria , Masculino , Espermatozoides/metabolismo
11.
Sci Rep ; 11(1): 19580, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599210

RESUMEN

MicroRNAs are small noncoding RNAs that have important roles in the lactation process and milk biosynthesis. Some polymorphisms have been studied in various livestock species from the perspective of pathology or production traits. To target variants that could be the causal variants of dairy traits, genetic variants of microRNAs expressed in the mammary gland or present in milk and localized in dairy quantitative trait loci (QTLs) were investigated in bovine, caprine, and ovine species. In this study, a total of 59,124 (out of 28 millions), 13,427 (out of 87 millions), and 4761 (out of 38 millions) genetic variants in microRNAs expressed in the mammary gland or present in milk were identified in bovine, caprine, and ovine species, respectively. A total of 4679 of these detected bovine genetic variants are located in dairy QTLs. In caprine species, 127 genetic variants are localized in dairy QTLs. In ovine species, no genetic variant was identified in dairy QTLs. This study leads to the detection of microRNA genetic variants of interest in the context of dairy production, taking advantage of whole genome data to identify microRNA genetic variants expressed in the mammary gland and localized in dairy QTLs.


Asunto(s)
Variación Genética , Genoma , Genómica , MicroARNs/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Rumiantes/genética , Animales , Biología Computacional/métodos , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
12.
Front Genet ; 12: 675569, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995500

RESUMEN

The Maremmana cattle is an ancient Podolian-derived Italian breed raised in semi-wild conditions with distinctive morphological and adaptive traits. The aim of this study was to detect potential selection signatures in Maremmana using medium-density single nucleotide polymorphism array. Putative selection signatures were investigated combining three statistical approaches designed to quantify the excess of haplotype homozygosity either within (integrated haplotype score, iHS) or among pairs of populations (Rsb and XP-EHH), and contrasting the Maremmana with a single reference population composed of a pool of seven Podolian-derived Italian breeds. Overall, the three haplotype-based analyses revealed selection signatures distributed over 19 genomic regions. Of these, six relevant candidate regions were identified by at least two approaches. We found genomic signatures of selective sweeps spanning genes related to mitochondrial function, muscle development, growth, and meat traits (SCIN, THSD7A, ETV1, UCHL1, and MYOD1), which reflects the different breeding schemes between Maremmana (semi-wild conditions) and the other Podolian-derived Italian breeds (semi-extensive). We also identified several genes linked to Maremmana adaptation to the environment of the western-central part of Italy, known to be hyperendemic for malaria and other tick-borne diseases. These include several chemokine (C-C motif) ligand genes crucially involved in both innate and adaptive immune responses to intracellular parasite infections and other genes playing key roles in pulmonary disease (HEATR9, MMP28, and ASIC2) or strongly associated with malaria resistance/susceptibility (AP2B1). Our results provide a glimpse into diverse selection signatures in Maremmana cattle and can be used to enhance our understanding of the genomic basis of environmental adaptation in cattle.

13.
Sci Rep ; 11(1): 7537, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824377

RESUMEN

The mineral composition of bovine milk plays an important role in determining its nutritional and cheese-making value. Concentrations of the main minerals predicted from mid-infrared spectra produced during milk recording, combined with cow genotypes, provide a unique opportunity to decipher the genetic determinism of these traits. The present study included 1 million test-day predictions of Ca, Mg, P, K, Na, and citrate content from 126,876 Montbéliarde cows, of which 19,586 had genotype data available. All investigated traits were highly heritable (0.50-0.58), with the exception of Na (0.32). A sequence-based genome-wide association study (GWAS) detected 50 QTL (18 affecting two to five traits) and positional candidate genes and variants, mostly located in non-coding sequences. In silico post-GWAS analyses highlighted 877 variants that could be regulatory SNPs altering transcription factor (TF) binding sites or located in non-coding RNA (mainly lncRNA). Furthermore, we found 47 positional candidate genes and 45 TFs highly expressed in mammary gland compared to 90 other bovine tissues. Among the mammary-specific genes, SLC37A1 and ANKH, encoding proteins involved in ion transport were located in the most significant QTL. This study therefore highlights a comprehensive set of functional candidate genes and variants that affect milk mineral content.


Asunto(s)
Lactancia/genética , Leche/química , Animales , Bovinos/genética , Femenino , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Lactancia/metabolismo , Lactancia/fisiología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Minerales/metabolismo , Fenotipo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable
14.
Sci Rep ; 10(1): 19466, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173134

RESUMEN

Natural-driven selection is supposed to have left detectable signatures on the genome of North African cattle which are often characterized by the fixation of genetic variants associated with traits under selection pressure and/or an outstanding genetic differentiation with other populations at particular loci. Here, we investigate the population genetic structure and we provide a first outline of potential selection signatures in North African cattle using single nucleotide polymorphism genotyping data. After comparing our data to African, European and indicine cattle populations, we identified 36 genomic regions using three extended haplotype homozygosity statistics and 92 outlier markers based on Bayescan test. The 13 outlier windows detected by at least two approaches, harboured genes (e.g. GH1, ACE, ASIC3, HSPH1, MVD, BCL2, HIGD2A, CBFA2T3) that may be involved in physiological adaptations required to cope with environmental stressors that are typical of the North African area such as infectious diseases, extended drought periods, scarce food supply, oxygen scarcity in the mountainous areas and high-intensity solar radiation. Our data also point to candidate genes involved in transcriptional regulation suggesting that regulatory elements had also a prominent role in North African cattle response to environmental constraints. Our study yields novel insights into the unique adaptive capacity in these endangered populations emphasizing the need for the use of whole genome sequence data to gain a better understanding of the underlying molecular mechanisms.


Asunto(s)
Adaptación Fisiológica/genética , Bovinos/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Selección Genética , África del Norte , Animales , Cruzamiento/métodos , Frecuencia de los Genes , Genética de Población/métodos , Genómica/métodos , Genotipo , Haplotipos , Fenotipo , Sitios de Carácter Cuantitativo/genética , Secuenciación Completa del Genoma/métodos
15.
Genet Sel Evol ; 52(1): 67, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33167870

RESUMEN

BACKGROUND: French beef producers suffer from the decrease in profitability of their farms mainly because of the continuous increase in feed costs. Selection for feed efficiency in beef cattle represents a relevant solution to face this problem. However, feed efficiency is a complex trait that can be assessed by three major criteria: residual feed intake (RFI), residual gain (RG) and feed efficiency ratio (FE), which involve different genetic determinisms. An analysis that combines phenotype and whole-genome sequence data provides a unique framework for genomic studies. The aim of our study was to identify the gene networks and the biological processes that are responsible for the genetic determinism that is shared between these three feed efficiency criteria. RESULTS: A population of 1477 French Charolais young bulls was phenotyped for feed intake (FI), average daily gain (ADG) and final weight (FW) to estimate RFI, RG and FE. A subset of 789 young bulls was genotyped on the BovineSNP50 single nucleotide polymorphism (SNP) array and imputed at the sequence level using RUN6 of the 1000 Bull Genomes Project. We conducted a genome-wide association study (GWAS) to estimate the individual effect of 8.5 million SNPs and applied an association weight matrix (AWM) approach to analyse the results, one for each feed efficiency criterion. The results highlighted co-association networks including 626 genes for RFI, 426 for RG and 564 for FE. Enrichment assessment revealed the biological processes that show the strongest association with RFI, RG and FE, i.e. digestive tract (salivary, gastric and mucin secretion) and metabolic processes (cellular and cardiovascular). Energetic functions were more associated with RFI and FE and cardio-vascular and cellular processes with RG. Several hormones such as apelin, glucagon, insulin, aldosterone, the gonadotrophin releasing hormone and the thyroid hormone were also identified, and these should be tested in future studies as candidate biomarkers for feed efficiency. CONCLUSIONS: The combination of network and pathway analyses at the sequence level led to the identification of both common and specific mechanisms that are involved in RFI, RG and FE, and to a better understanding of the genetic determinism underlying these three criteria. The effects of the genes involved in each of the identified processes need to be tested in genomic evaluations to confirm the potential gain in reliability of using functional variants to select animals for feed efficiency.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales/genética , Bovinos/genética , Redes Reguladoras de Genes , Animales , Peso Corporal/genética , Bovinos/crecimiento & desarrollo , Digestión/genética , Ingestión de Alimentos/genética , Metabolismo Energético/genética , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable
16.
Genet Sel Evol ; 52(1): 55, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32998688

RESUMEN

BACKGROUND: Over the last years, genome-wide association studies (GWAS) based on imputed whole-genome sequences (WGS) have been used to detect quantitative trait loci (QTL) and highlight candidate genes for important traits. However, in general this approach does not allow to validate the effects of candidate mutations or determine if they are truly causative for the trait(s) in question. To address these questions, we applied a two-step, within-breed GWAS approach on 15 traits (5 linked with milk production, 2 with udder health, and 8 with udder morphology) in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) cattle. We detected the most-promising candidate variants (CV) using imputed WGS of 2515 MON, 2203 NOR, and 6321 HOL bulls, and validated their effects in three younger populations of 23,926 MON, 9400 NOR, and 51,977 HOL cows. RESULTS: Bull sequence-based GWAS detected 84 QTL: 13, 10, and 30 for milk production traits; 3, 0, and 2 for somatic cell score (SCS); and 8, 2 and 16 for udder morphology traits, in MON, NOR, and HOL respectively. Five genomic regions with effects on milk production traits were shared among the three breeds whereas six (2 for production and 4 for udder morphology and health traits) had effects in two breeds. In 80 of these QTL, 855 CV were highlighted based on the significance of their effects and functional annotation. The subsequent GWAS on MON, NOR, and HOL cows validated 8, 9, and 23 QTL for production traits; 0, 0, and 1 for SCS; and 4, 1, and 8 for udder morphology traits, respectively. In 47 of the 54 confirmed QTL, the CV identified in bulls had more significant effects than single nucleotide polymorphisms (SNPs) from the standard 50K chip. The best CV for each validated QTL was located in a gene that was functionally related to production (36 QTL) or udder (9 QTL) traits. CONCLUSIONS: Using this two-step GWAS approach, we identified and validated 54 QTL that included CV mostly located within functional candidate genes and explained up to 6.3% (udder traits) and 37% (production traits) of the genetic variance of economically important dairy traits. These CV are now included in the chip used to evaluate French dairy cattle and can be integrated into routine genomic evaluation.


Asunto(s)
Bovinos/genética , Lactancia/genética , Glándulas Mamarias Animales/fisiología , Sitios de Carácter Cuantitativo , Animales , Bovinos/fisiología , Femenino , Glándulas Mamarias Animales/anatomía & histología , Leche/metabolismo , Polimorfismo Genético , Carácter Cuantitativo Heredable
17.
Genet Sel Evol ; 52(1): 37, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32635893

RESUMEN

BACKGROUND: Sequence-based genome-wide association studies (GWAS) provide high statistical power to identify candidate causal mutations when a large number of individuals with both sequence variant genotypes and phenotypes is available. A meta-analysis combines summary statistics from multiple GWAS and increases the power to detect trait-associated variants without requiring access to data at the individual level of the GWAS mapping cohorts. Because linkage disequilibrium between adjacent markers is conserved only over short distances across breeds, a multi-breed meta-analysis can improve mapping precision. RESULTS: To maximise the power to identify quantitative trait loci (QTL), we combined the results of nine within-population GWAS that used imputed sequence variant genotypes of 94,321 cattle from eight breeds, to perform a large-scale meta-analysis for fat and protein percentage in cattle. The meta-analysis detected (p ≤ 10-8) 138 QTL for fat percentage and 176 QTL for protein percentage. This was more than the number of QTL detected in all within-population GWAS together (124 QTL for fat percentage and 104 QTL for protein percentage). Among all the lead variants, 100 QTL for fat percentage and 114 QTL for protein percentage had the same direction of effect in all within-population GWAS. This indicates either persistence of the linkage phase between the causal variant and the lead variant across breeds or that some of the lead variants might indeed be causal or tightly linked with causal variants. The percentage of intergenic variants was substantially lower for significant variants than for non-significant variants, and significant variants had mostly moderate to high minor allele frequencies. Significant variants were also clustered in genes that are known to be relevant for fat and protein percentages in milk. CONCLUSIONS: Our study identified a large number of QTL associated with fat and protein percentage in dairy cattle. We demonstrated that large-scale multi-breed meta-analysis reveals more QTL at the nucleotide resolution than within-population GWAS. Significant variants were more often located in genic regions than non-significant variants and a large part of them was located in potentially regulatory regions.


Asunto(s)
Bovinos/genética , Genotipo , Desequilibrio de Ligamiento , Lípidos/genética , Proteínas de la Leche/genética , Leche/normas , Animales , Frecuencia de los Genes , Leche/metabolismo , Polimorfismo Genético , Sitios de Carácter Cuantitativo
18.
Epigenetics Chromatin ; 13(1): 19, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228651

RESUMEN

BACKGROUND: Mature sperm carry thousands of RNAs, including mRNAs, lncRNAs, tRNAs, rRNAs and sncRNAs, though their functional significance is still a matter of debate. Growing evidence suggests that sperm RNAs, especially sncRNAs, are selectively retained during spermiogenesis or specifically transferred during epididymis maturation, and are thus delivered to the oocyte at fertilization, providing resources for embryo development. However , a deep characterization of the sncRNA content of bull sperm and its expression profile across breeds is currently lacking. To fill this gap, we optimized a guanidinium-Trizol total RNA extraction protocol to prepare high-quality RNA from frozen bull sperm collected from 40 representative bulls from six breeds. Deep sequencing was performed (40 M single 50-bp reads per sample) to establish a comprehensive repertoire of cattle sperm sncRNA. RESULTS: Our study showed that it comprises mostly piRNAs (26%), rRNA fragments (25%), miRNAs (20%) and tRNA fragments (tsRNA, 14%). We identified 5p-halves as the predominant tsRNA subgroup in bull sperm, originating mostly from Gly and Glu isoacceptors. Our study also increased by ~ 50% the sperm repertoire of known miRNAs and identified 2022 predicted miRNAs. About 20% of sperm miRNAs were located within genomic clusters, expanding the list of known polycistronic pri-miRNA clusters and defining several networks of co-expressed miRNAs. Strikingly, our study highlighted the great diversity of isomiRs, resulting mainly from deletions and non-templated additions (A and U) at the 3p end. Substitutions within miRNA sequence accounted for 40% of isomiRs, with G>A, U>C and C>U substitutions being the most frequent variations. In addition, many sncRNAs were found to be differentially expressed across breeds. CONCLUSIONS: Our study provides a comprehensive overview of cattle sperm sncRNA, and these findings will pave the way for future work on the role of sncRNAs in embryo development and their relevance as biomarkers of semen fertility.


Asunto(s)
Bovinos/genética , Variación Genética , ARN Pequeño no Traducido/genética , Espermatozoides/metabolismo , Animales , Masculino , ARN Pequeño no Traducido/metabolismo , Transcriptoma
19.
Genet Sel Evol ; 52(1): 14, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32183688

RESUMEN

BACKGROUND: Bovine paratuberculosis is a contagious disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), with adverse effects on animal welfare and serious economic consequences. Published results on host genetic resistance to MAP are inconsistent, mainly because of difficulties in characterizing the infection status of cows. The objectives of this study were to identify quantitative trait loci (QTL) for resistance to MAP in Holstein and Normande cows with an accurately defined status for MAP. RESULTS: From MAP-infected herds, cows without clinical signs of disease were subjected to at least four repeated serum ELISA and fecal PCR tests over time to determine both infected and non-infected statuses. Clinical cases were confirmed using PCR. Only cows that had concordant results for all tests were included in further analyses. Positive and control cows were matched within herd according to their birth date to ensure a same level of exposure to MAP. Cows with accurate phenotypes, i.e. unaffected (control) or affected (clinical or non-clinical cases), were genotyped with the Illumina BovineSNP50 BeadChip. Genotypes were imputed to whole-genome sequences using the 1000 Bull Genomes reference population (run6). A genome-wide association study (GWAS) of MAP status of 1644 Holstein and 649 Normande cows, using either two (controls versus cases) or three classes of phenotype (controls, non-clinical and clinical cases), revealed three regions, on Bos taurus (BTA) chromosomes 12, 13, and 23, presenting significant effects in Holstein cows, while only one of those was identified in Normande cows (BTA23). The most significant effect was found on BTA13, in a short 8.5-kb region. Conditional analyses revealed that only one causal variant may be responsible for the effects observed on each chromosome with the ABCC4 (BTA12), CBFA2T2 (BTA13), and IER3 (BTA23) genes as good functional candidates. CONCLUSIONS: A sequence-based GWAS on cows for which resistance to MAP was accurately defined, was able to identify candidate variants located in genes that were functionally related to resistance to MAP; these explained up to 28% of the genetic variance of the trait. These results are very encouraging for efforts towards implementation of a breeding strategy aimed at improving resistance to paratuberculosis in Holstein cows.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Enfermedades de los Bovinos/genética , Cromosomas/genética , Estudio de Asociación del Genoma Completo/veterinaria , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Paratuberculosis/genética , Sitios de Carácter Cuantitativo/genética , Proteínas Represoras/genética , Animales , Cruzamiento , Bovinos , Ensayo de Inmunoadsorción Enzimática , Femenino , Genotipo , Mycobacterium avium subsp. paratuberculosis , Fenotipo
20.
J Anim Breed Genet ; 137(6): 609-621, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32219904

RESUMEN

The Valdostana is a local dual purpose cattle breed developed in Italy. Three populations are recognized within this breed, based on coat colour, production level, morphology and temperament: Valdostana Red Pied (VPR), Valdostana Black Pied (VPN) and Valdostana Chestnut (VCA). Here, we investigated putative genomic regions under selection among these three populations using the Bovine 50K SNP array by combining three different statistical methods based either on allele frequencies (FST ) or extended haplotype homozygosity (iHS and Rsb). In total, 8, 5 and 8 chromosomes harbouring 13, 13 and 16 genomic regions potentially under selection were identified by at least two approaches in VPR, VPN and VCA, respectively. Most of these candidate regions were population-specific but we found one common genomic region spanning 2.38 Mb on BTA06 which either overlaps or is located close to runs of homozygosity islands detected in the three populations. This region included inter alia two well-known genes: KDR, a well-established coat colour gene, and CLOCK, which plays a central role in positive regulation of inflammatory response and in the regulation of the mammalian circadian rhythm. The other candidate regions identified harboured genes associated mainly with milk and meat traits as well as genes involved in immune response/inflammation or associated with behavioural traits. This last category of genes was mainly identified in VCA, which is selected for fighting ability. Overall, our results provide, for the first time, a glimpse into regions of the genome targeted by selection in Valdostana cattle. Finally, this study illustrates the relevance of using multiple complementary approaches to identify genomic regions putatively under selection in livestock.


Asunto(s)
Conducta Animal , Genoma/genética , Sitios de Carácter Cuantitativo/genética , Selección Genética , Animales , Cruzamiento , Bovinos , Frecuencia de los Genes/genética , Estudios de Asociación Genética , Genotipo , Haplotipos/genética , Homocigoto , Carne , Leche , Fenotipo , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...