Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(18): 3379-3390, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37001992

RESUMEN

Early and progressive cortico-striatal circuit alterations have been widely characterized in Huntington's disease (HD) patients. Cortical premotor area, M2 cortex in rodents, is the most affected cortical input to the striatum from early stages in patients and is associated to the motor learning deficits present in HD mice. Yet, M2 cortex sends additional long-range axon collaterals to diverse output brain regions beyond basal ganglia. Here, we aimed to elucidate the contribution of M2 cortex projections to HD pathophysiology in mice. Using fMRI, M2 cortex showed most prominent functional connectivity alterations with the superior colliculus (SC) in symptomatic R6/1 HD male mice. Structural alterations were also detected by tractography, although diffusion weighted imaging measurements suggested preserved SC structure and similar electrophysiological responses were obtained in the SC on optogenetic stimulation of M2 cortical axons. Male and female HD mice showed behavioral alterations linked to SC function, including decreased defensive behavioral responses toward unexpected stimuli, such as a moving robo-beetle, and decreased locomotion on an unexpected flash of light. Additionally, GCamp6f fluorescence recordings with fiber photometry showed that M2 cortex activity was engaged by the presence of a randomly moving robo-bettle, an effect absent in HD male mice. Moreover, acute chemogenetic M2 cortex inhibition in WT mice shift behavioral responses toward an HD phenotype. Collectively, our findings highlight the involvement of M2 cortex activity in visual stimuli-induced behavioral responses, which are deeply altered in the R6/1 HD mouse model.SIGNIFICANCE STATEMENT Understanding brain circuit alterations in brain disorders is critical for developing circuit-based therapeutic interventions. The cortico-striatal circuit is the most prominently disturbed in Huntington's disease (HD); and particularly, M2 cortex has a prominent role. However, the same M2 cortical neurons send additional projections to several brain regions beyond striatum. We characterized new structural and functional circuitry alterations of M2 cortex in HD mouse models and found that M2 cortex projection to the superior colliculus (SC) was deeply impaired. Moreover, we describe differential responses to unexpected sensory stimulus in HD mouse models, which relies on SC function. Our data highlight the involvement of M2 cortex in SC-dependent sensory processing and its alterations in HD pathophysiology.


Asunto(s)
Enfermedad de Huntington , Ratones , Masculino , Femenino , Animales , Colículos Superiores , Neuronas/fisiología , Cuerpo Estriado , Axones , Modelos Animales de Enfermedad , Ratones Transgénicos
2.
Curr Biol ; 32(21): 4699-4706.e4, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36182699

RESUMEN

Loss of appetite and negative energy balance are common features of endotoxemia in all animals and are thought to have protective roles by reducing nutrient availability to host and pathogen metabolism. Accordingly, fasting and caloric restriction have well-established anti-inflammatory properties. However, in response to reduced nutrient availability at the cellular and organ levels, negative energy balance also recruits distinct energy-sensing brain circuits, but it is not known whether these neuronal systems have a role in its anti-inflammatory effects. Here, we report that hypothalamic AgRP neurons-a critical neuronal population for the central representation of negative energy balance-have parallel immunoregulatory functions. We found that when endotoxemia occurs in fasted mice, the activity of AgRP neurons remains sustained, but this activity does not influence feeding behavior and endotoxemic anorexia. Furthermore, we found that endotoxemia acutely desensitizes AgRP neurons, which also become refractory to inhibitory signals. Mimicking this sustained AgRP neuron activity in fed mice by chemogenetic activation-a manipulation known to recapitulate core behavioral features of fasting-results in reduced acute tumor necrosis factor alpha (TNF-α) release during endotoxemia. Mechanistically, we found that endogenous glucocorticoids play an important role: glucocorticoid receptor deletion from AgRP neurons prevents their endotoxemia-induced desensitization, and importantly, it counteracts the fasting-induced suppression of TNF-α release, resulting in prolonged sickness. Together, these findings provide evidence directly linking AgRP neuron activity to the acute response during endotoxemia, suggesting that these neurons are a functional component of the immunoregulatory effects associated with negative energy balance and catabolic metabolism.


Asunto(s)
Endotoxemia , Factor de Necrosis Tumoral alfa , Ratones , Animales , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Factor de Necrosis Tumoral alfa/genética , Endotoxemia/metabolismo , Endotoxemia/patología , Hipotálamo/metabolismo , Neuronas/fisiología , Metabolismo Energético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...