Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396738

RESUMEN

The emergence and mutation of pathogenic viruses have been occurring at an unprecedented rate in recent decades. The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global public health crisis due to extensive viral transmission. In situ RNA mapping has revealed angiotensin-converting enzyme 2 (ACE2) expression to be highest in the nose and lower in the lung, pointing to nasal susceptibility as a predominant route for infection and the cause of subsequent pulmonary effects. By blocking viral attachment and entry at the nasal airway using a cyclodextrin-based formulation, a preventative therapy can be developed to reduce viral infection at the site of entry. Here, we assess the safety and antiviral efficacy of cyclodextrin-based formulations. From these studies, hydroxypropyl beta-cyclodextrin (HPBCD) and hydroxypropyl gamma-cyclodextrin (HPGCD) were then further evaluated for antiviral effects using SARS-CoV-2 pseudotypes. Efficacy findings were confirmed with SARS-CoV-2 Delta variant infection of Calu-3 cells and using a K18-hACE2 murine model. Intranasal pre-treatment with HPBCD-based formulations reduced viral load and inflammatory signaling in the lung. In vitro efficacy studies were further conducted using lentiviruses, murine hepatitis virus (MHV), and influenza A virus subtype H1N1. These findings suggest HPBCD may be used as an agnostic barrier against transmissible pathogens, including but not limited to SARS-CoV-2.


Asunto(s)
Ciclodextrinas , Subtipo H1N1 del Virus de la Influenza A , Virosis , beta-Ciclodextrinas , Humanos , Ratones , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , beta-Ciclodextrinas/farmacología
2.
Sci Rep ; 14(1): 2795, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307915

RESUMEN

Electrical stimulation of the peripheral nervous system (PNS) is becoming increasingly important for the therapeutic treatment of numerous disorders. Thus, as peripheral nerves are increasingly the target of electrical stimulation, it is critical to determine how, and when, electrical stimulation results in anatomical changes in neural tissue. We introduce here a convolutional neural network and support vector machines for cell segmentation and analysis of histological samples of the sciatic nerve of rats stimulated with varying current intensities. We describe the methodologies and present results that highlight the validity of the approach: machine learning enabled highly efficient nerve measurement collection, while multivariate analysis revealed notable changes to nerves' anatomy, even when subjected to levels of stimulation thought to be safe according to the Shannon current limits.


Asunto(s)
Nervios Periféricos , Nervio Ciático , Ratas , Animales , Nervios Periféricos/fisiología , Nervio Ciático/patología , Estimulación Eléctrica/métodos , Aprendizaje Automático
3.
Artículo en Inglés | MEDLINE | ID: mdl-37186528

RESUMEN

In retinal degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD), the photoreceptors become stressed and start to degenerate in the early stages of the disease. Retinal prosthetic devices have been developed to restore vision in patients by applying electrical stimulation to the surviving retinal cells. However, these devices provide limited visual perception as the therapeutic interventions are generally considered in the later stages of the disease when only inner retinal layer cells are left. A potential treatment option for retinal degenerative diseases in the early stages can be stimulating bipolar cells, which receive presynaptic signals from photoreceptors. In this work, we constructed computational models of healthy and degenerated (both ON and OFF-type) cone bipolar cells (CBCs) with realistic morphologies extracted from connectomes of the healthy and early-stage degenerated rabbit retina. We examined these cells' membrane potential and axon terminal calcium current differences when subjected to electrical stimulation. In addition, we investigated how differently healthy and degenerated cells behave with respect to various stimulation parameters, including pulse duration and cells' distance from the stimulating electrode. The results suggested that regardless of the position of the OFF CBCs in the retina model, there is not a significant difference between the membrane potential of healthy and degenerate cells when electrically stimulated. However, the healthy ON CBC axon terminal membrane potential rising time-constant is shorter (0.29 ± 0.03 ms) than the degenerated cells (0.8 ± 0.07 ms). Moreover, the ionic calcium channels at the axon terminals of the cells have a higher concentration and higher current in degenerated cells (32.24 ± 6.12 pA) than the healthy cells (13.64 ± 2.88 pA) independently of the cell's position.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Animales , Conejos , Degeneración Retiniana/terapia , Retina/fisiología , Retinitis Pigmentosa/terapia , Axones/fisiología , Estimulación Eléctrica/métodos
4.
Int J Neural Syst ; 33(4): 2350022, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36916993

RESUMEN

Electrical stimulation of the peripheral nervous system is a promising therapeutic option for several conditions; however, its effects on tissue and the safety of the stimulation remain poorly understood. In order to devise stimulation protocols that enhance therapeutic efficacy without the risk of causing tissue damage, we constructed computational models of peripheral nerve and stimulation cuffs based on extremely high-resolution cross-sectional images of the nerves using the most recent advances in computing power and machine learning techniques. We developed nerve models using nonstimulated (healthy) and over-stimulated (damaged) rat sciatic nerves to explore how nerve damage affects the induced current density distribution. Using our in-house computational, quasi-static, platform, and the Admittance Method (AM), we estimated the induced current distribution within the nerves and compared it for healthy and damaged nerves. We also estimated the extent of localized cell damage in both healthy and damaged nerve samples. When the nerve is damaged, as demonstrated principally by the decreased nerve fiber packing, the current penetrates deeper into the over-stimulated nerve than in the healthy sample. As safety limits for electrical stimulation of peripheral nerves still refer to the Shannon criterion to distinguish between safe and unsafe stimulation, the capability this work demonstrated is an important step toward the development of safety criteria that are specific to peripheral nerve and make use of the latest advances in computational bioelectromagnetics and machine learning, such as Python-based AM and CNN-based nerve image segmentation.


Asunto(s)
Redes Neurales de la Computación , Nervio Ciático , Ratas , Animales , Nervio Ciático/fisiología , Estimulación Eléctrica/métodos
5.
Sci Rep ; 13(1): 4099, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36907909

RESUMEN

Airborne transmission by droplets and aerosols is known to play a critical role in the spread of many viruses amongst which are the common flu and the more recent SARS-CoV-2 viruses. In the case of SARS-CoV-2, the nasal cavity not only constitutes an important viral entry point, but also a primary site of infection (Sungnak W. et al. Nat. Med. 26:681-687. https://doi.org/10.1038/s41591-020-0868-6 , 2020).. Although face masks are a well-established preventive measure, development of novel and easy-to-use prophylactic measures would be highly beneficial in fighting viral spread and the subsequent emergence of variants of concern (Tao K. et al. Nat Rev Genet 22:757-773. https://doi.org/10.1038/s41576-021-00408-x , 2021). Our group has been working on optimizing a nasal spray delivery system that deposits particles inside the susceptible regions of the nasal cavity to act as a mechanical barrier to impede viral entry. Here, we identify computationally the delivery parameters that maximize the protection offered by this barrier. We introduce the computational approach and quantify the protection rate obtained as a function of a broad range of delivery parameters. We also introduce a modified design and demonstrate that it significantly improves deposition, thus constituting a viable approach to protect against nasal infection of airborne viruses. We then discuss our findings and the implications of this novel system on the prevention of respiratory diseases and targeted drug delivery.


Asunto(s)
COVID-19 , Rociadores Nasales , Humanos , SARS-CoV-2 , Aerosoles y Gotitas Respiratorias , Cavidad Nasal
6.
Artículo en Inglés | MEDLINE | ID: mdl-37846407

RESUMEN

Although electrical stimulation is an established treatment option for multiple central nervous and peripheral nervous system diseases, its effects on the tissue and subsequent safety of the stimulation are not well understood. Therefore, it is crucial to design stimulation protocols that maximize therapeutic efficacy while avoiding any potential tissue damage. Further, the stimulation levels need to be adjusted regularly to ensure that they are safe even with the changes to the nerve due to long-term stimulation. Using the latest advances in computing capabilities and machine learning approaches, we developed computational models of peripheral nerve stimulation based on very high-resolution cross-sectional images of the nerves. We generated nerve models constructed from non-stimulated (healthy) and over-stimulated (damaged) rat sciatic nerves to examine how the current density distribution is affected by nerve damage. Using our in-house numerical solver, the Admittance Method (AM), we computed the induced current distribution inside the nerves and compared the current penetration for healthy and damaged nerves. Our computational results indicate that when the nerve is damaged, primarily evidenced by the decreased nerve fiber packing, the current penetrates deeper inside the nerve than in the healthy case. As safety limits for electrical stimulation of biological tissue are still debated, we ultimately aim to utilize our computational models to determine refined safety criteria and help design safer and more efficacious electrical stimulation protocols.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4416-4419, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892199

RESUMEN

Electrical stimulation of peripheral nerves has long been used and proven effective in restoring function caused by disease or injury. Accurate placement of electrodes is often critical to properly excite the nerve and yield the desired outcome. Computational modeling is becoming an important tool that can guide the rapid development and optimization of such implantable neural stimulation devices. Here, we developed a heterogeneous very high-resolution computational model of a realistic peripheral nerve stimulated by a current source through cuff electrodes. We then calculated the current distribution inside the nerve and investigated the effect of electrodes spacing on current penetration. In the present study, we first describe model implementation and calibration; we then detail the methodology we use to calculate current distribution and apply it to characterize the effect of electrodes distance on current penetration. Our computational results indicate that when the source and return cuff electrodes are placed close to each other, the penetration depth in the nerve is shallower than the cases in which the electrode distance is larger. This study outlines the utility of the proposed computational methods and anatomically correct high-resolution models in guiding and optimizing experimental nerve stimulation protocols.


Asunto(s)
Nervios Periféricos , Simulación por Computador , Estimulación Eléctrica , Electrodos
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4482-4486, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892214

RESUMEN

Partial vision restoration on degenerated retina can be achieved by electrically stimulating the surviving retinal ganglion cells via implanted electrodes to elicit a signal corresponding to the natural response of the cells. Realistic computational models of electrical stimulation of the retina can prove useful to test different stimulation strategies and improve the performance of retinal implants. Simulation of healthy retinal networks and their dynamical response to natural light stimulation may also help us understand how retinal processing takes place via a series of electrical signals flowing through different stages of retinal processing, ultimately giving rise to visual percepts. Such models may provide further insights on retinal network processing and thus guide the design of retinal prostheses and their stimulation protocols to generate more natural percepts. This work aims to characterize the photocurrent generated by healthy cone photoreceptors in response to a light flash stimulation and the resulting membrane potential for the photoreceptors and its postsynaptic cone bipolar cells. A simple network of ten cone photoreceptors synapsing with a cone bipolar cell is simulated using the NEURON environment and validated against patch-clamp recordings of cone photoreceptors and ON-type bipolar cells (ON-BC). The results presented will be valuable in modeling light-evoked or electrically stimulated retinal networks that comprise cone pathways. The computational models and methods developed in this work will serve as an integral building block in the development of large and realistic retinal networks.Clinical Relevance- Accurate computational model of a retinal neural network can help in predicting cell responses to electrical stimulation in vision restoration therapies using prostheses. It can be leveraged to optimize the stimulation parameters to match the natural light response of the network as closely as possible.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Prótesis Visuales , Simulación por Computador , Retina , Células Ganglionares de la Retina
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6547-6550, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892609

RESUMEN

Retinal prosthetic systems have been developed to help blind patients suffering from retinal degenerative diseases gain some useful form of vision. Various experimental and computational studies have been performed to test electrical stimulation strategies that can improve the performance of these devices. Detailed computational models of retinal neurons, such as retinal ganglion cells (RGCs) and bipolar cells (BCs), allow us to explore the mechanisms underlying the response of cells to electrical stimulation. While electrophysiological studies have shown the presence of voltage-gated ionic channels in different regions of BCs, many of the existing cone BCs models are assumed to be passive or only contain calcium channels at the synaptic terminals. We have utilized our Admittance Method (AM)-NEURON computational platform to implement a more realistic model of ON-BCs. Our model closely replicates the recent patch-clamp experiments directly measuring the response of ON-BCs to epiretinal electrical stimulation and thereby predicts the regional distributions of the ionic channels. Our computational results further indicate that outward potassium current strongly contributes to the depolarizing voltage transient of ON-BCs in response to electrical stimulation.


Asunto(s)
Células Bipolares de la Retina , Degeneración Retiniana , Estimulación Eléctrica , Humanos , Retina , Células Ganglionares de la Retina
10.
J Neural Eng ; 18(6)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34826830

RESUMEN

Objective. Retinal implants have been developed to electrically stimulate healthy retinal neurons in the progressively degenerated retina. Several stimulation approaches have been proposed to improve the visual percept induced in patients with retinal prostheses. We introduce a computational model capable of simulating the effects of electrical stimulation on retinal neurons. Leveraging this computational platform, we delve into the underlying mechanisms influencing the sensitivity of retinal neurons' response to various stimulus waveforms.Approach. We implemented a model of spiking bipolar cells (BCs) in the magnocellular pathway of the primate retina, diffuse BC subtypes (DB4), and utilized our multiscale admittance method (AM)-NEURON computational platform to characterize the response of BCs to epiretinal electrical stimulation with monophasic, symmetric, and asymmetric biphasic pulses.Main results. Our investigations yielded four notable results: (a) the latency of BCs increases as stimulation pulse duration lengthens; conversely, this latency decreases as the current amplitude increases. (b) Stimulation with a long anodic-first symmetric biphasic pulse (duration > 8 ms) results in a significant decrease in spiking threshold compared to stimulation with similar cathodic-first pulses (from 98.2 to 57.5µA). (c) The hyperpolarization-activated cyclic nucleotide-gated channel was a prominent contributor to the reduced threshold of BCs in response to long anodic-first stimulus pulses. (d) Finally, extending the study to asymmetric waveforms, our results predict a lower BCs threshold using asymmetric long anodic-first pulses compared to that of asymmetric short cathodic-first stimulation.Significance. This study predicts the effects of several stimulation parameters on spiking BCs response to electrical stimulation. Of importance, our findings shed light on mechanisms underlying the experimental observations from the literature, thus highlighting the capability of the methodology to predict and guide the development of electrical stimulation protocols to generate a desired biological response, thereby constituting an ideal testbed for the development of electroceutical devices.


Asunto(s)
Células Bipolares de la Retina , Prótesis Visuales , Animales , Estimulación Eléctrica/métodos , Humanos , Retina/fisiología , Células Ganglionares de la Retina/fisiología
11.
Front Comput Neurosci ; 15: 733155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658827

RESUMEN

Synapses are critical actors of neuronal transmission as they form the basis of chemical communication between neurons. Accurate computational models of synaptic dynamics may prove important in elucidating emergent properties across hierarchical scales. Yet, in large-scale neuronal network simulations, synapses are often modeled as highly simplified linear exponential functions due to their small computational footprint. However, these models cannot capture the complex non-linear dynamics that biological synapses exhibit and thus, are insufficient in representing synaptic behavior accurately. Existing detailed mechanistic synapse models can replicate these non-linear dynamics by modeling the underlying kinetics of biological synapses, but their high complexity prevents them from being a suitable option in large-scale models due to long simulation times. This motivates the development of more parsimonious models that can capture the complex non-linear dynamics of synapses accurately while maintaining a minimal computational cost. We propose a look-up table approach that stores precomputed values thereby circumventing most computations at runtime and enabling extremely fast simulations for glutamatergic receptors AMPAr and NMDAr. Our results demonstrate that this methodology is capable of replicating the dynamics of biological synapses as accurately as the mechanistic synapse models while offering up to a 56-fold increase in speed. This powerful approach allows for multi-scale neuronal networks to be simulated at large scales, enabling the investigation of how low-level synaptic activity may lead to changes in high-level phenomena, such as memory and learning.

12.
Front Comput Neurosci ; 14: 588881, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328947

RESUMEN

The topographic organization of afferents to the hippocampal CA3 subfield are well-studied, but their role in influencing the spatiotemporal dynamics of population activity is not understood. Using a large-scale, computational neuronal network model of the entorhinal-dentate-CA3 system, the effects of the perforant path, mossy fibers, and associational system on the propagation and transformation of network spiking patterns were investigated. A correlation map was constructed to characterize the spatial structure and temporal evolution of pairwise correlations which underlie the emergent patterns found in the population activity. The topographic organization of the associational system gave rise to changes in the spatial correlation structure along the longitudinal and transverse axes of the CA3. The resulting gradients may provide a basis for the known functional organization observed in hippocampus.

13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2287-2290, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018464

RESUMEN

Mitochondria play a critical role in regulating cellular processes including ATP production, intracellular calcium signaling and generation of reactive oxidative species (ROS). Neurons rely on mitochondrial function to perform a range of complex processes, and mitochondrial dysfunctions have been shown to have an impact in pathologies of the nervous system. Yet, neurons contain a finite number of mitochondria, and their location is known to change in response to a number of factors including age and cellular activity, thereby impacting neuronal response. In this paper, we introduce a novel computational model of mitochondria motility that focuses on their movements along the axon. We describe the biological processes involved and the main parameters of the model. We use the model to investigate how some of these parameters affect the ability of mitochondria to position themselves in regions of high energy demand. Finally, we discuss the significance of our work and its downstream applications in further understanding pathologies of the nervous system such as Alzheimer's disease, and help identify potential novel therapeutic targets.


Asunto(s)
Axones , Mitocondrias , Señalización del Calcio , Movimiento Celular , Mitocondrias/metabolismo , Neuronas
14.
Front Comput Neurosci ; 14: 75, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013341

RESUMEN

Dysfunction in cholinergic modulation has been linked to a variety of cognitive disorders including Alzheimer's disease. The important role of this neurotransmitter has been explored in a variety of experiments, yet many questions remain unanswered about the contribution of cholinergic modulation to healthy hippocampal function. To address this question, we have developed a model of CA1 pyramidal neuron that takes into consideration muscarinic receptor activation in response to changes in extracellular concentration of acetylcholine and its effects on cellular excitability and downstream intracellular calcium dynamics. This model incorporates a variety of molecular agents to accurately simulate several processes heretofore ignored in computational modeling of CA1 pyramidal neurons. These processes include the inhibition of ionic channels by phospholipid depletion along with the release of calcium from intracellular stores (i.e., the endoplasmic reticulum). This paper describes the model and the methods used to calibrate its behavior to match experimental results. The result of this work is a compartmental model with calibrated mechanisms for simulating the intracellular calcium dynamics of CA1 pyramidal cells with a focus on those related to release from calcium stores in the endoplasmic reticulum. From this model we also make various predictions for how the inhibitory and excitatory responses to cholinergic modulation vary with agonist concentration. This model expands the capabilities of CA1 pyramidal cell models through the explicit modeling of molecular interactions involved in healthy cognitive function and disease. Through this expanded model we come closer to simulating these diseases and gaining the knowledge required to develop novel treatments.

15.
Front Comput Neurosci ; 14: 72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848687

RESUMEN

Significant progress has been made toward model-based prediction of neral tissue activation in response to extracellular electrical stimulation, but challenges remain in the accurate and efficient estimation of distributed local field potentials (LFP). Analytical methods of estimating electric fields are a first-order approximation that may be suitable for model validation, but they are computationally expensive and cannot accurately capture boundary conditions in heterogeneous tissue. While there are many appropriate numerical methods of solving electric fields in neural tissue models, there isn't an established standard for mesh geometry nor a well-known rule for handling any mismatch in spatial resolution. Moreover, the challenge of misalignment between current sources and mesh nodes in a finite-element or resistor-network method volume conduction model needs to be further investigated. Therefore, using a previously published and validated multi-scale model of the hippocampus, the authors have formulated an algorithm for LFP estimation, and by extension, bidirectional communication between discretized and numerically solved volume conduction models and biologically detailed neural circuit models constructed in NEURON. Development of this algorithm required that we assess meshes of (i) unstructured tetrahedral and grid-based hexahedral geometries as well as (ii) differing approaches for managing the spatial misalignment of current sources and mesh nodes. The resulting algorithm is validated through the comparison of Admittance Method predicted evoked potentials with analytically estimated LFPs. Establishing this method is a critical step toward closed-loop integration of volume conductor and NEURON models that could lead to substantial improvement of the predictive power of multi-scale stimulation models of cortical tissue. These models may be used to deepen our understanding of hippocampal pathologies and the identification of efficacious electroceutical treatments.

16.
Front Comput Neurosci ; 14: 13, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153379

RESUMEN

Advances in computation and neuronal modeling have enabled the study of entire neural tissue systems with an impressive degree of biological realism. These efforts have focused largely on modeling dendrites and somas while largely neglecting axons. The need for biologically realistic explicit axonal models is particularly clear for applications involving clinical and therapeutic electrical stimulation because axons are generally more excitable than other neuroanatomical subunits. While many modeling efforts can rely on existing repositories of reconstructed dendritic/somatic morphologies to study real cells or to estimate parameters for a generative model, such datasets for axons are scarce and incomplete. Those that do exist may still be insufficient to build accurate models because the increased geometric variability of axons demands a proportional increase in data. To address this need, a Ruled-Optimum Ordered Tree System (ROOTS) was developed that extends the capability of neuronal morphology generative methods to include highly branched cortical axon terminal arbors. Further, this study presents and explores a clear use-case for such models in the prediction of cortical tissue response to externally applied electric fields. The results presented herein comprise (i) a quantitative and qualitative analysis of the generative algorithm proposed, (ii) a comparison of generated fibers with those observed in histological studies, (iii) a study of the requisite spatial and morphological complexity of axonal arbors for accurate prediction of neuronal response to extracellular electrical stimulation, and (iv) an extracellular electrical stimulation strength-duration analysis to explore probable thresholds of excitation of the dentate perforant path under controlled conditions. ROOTS demonstrates a superior ability to capture biological realism in model fibers, allowing improved accuracy in predicting the impact that microscale structures and branching patterns have on spatiotemporal patterns of activity in the presence of extracellular electric fields.

18.
IEEE Trans Biomed Eng ; 66(10): 2728-2739, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30676938

RESUMEN

OBJECTIVE: The network architecture connecting neural regions is defined by the organization and anatomical properties of the projecting axons, but its contributions to neural encoding and system function are difficult to study experimentally. METHODS: Using a large-scale, spiking neuronal network model of rat dentate gyrus, the role of the anatomy of the entorhinal-dentate axonal projection was evaluated in the context of spatial encoding by incorporating grid cell activity to provide physiological, spatially-correlated input. The dorso-ventral extents of the entorhinal axon terminal fields were varied to generate different feedforward architectures, and the resulting spatial representations and spatial information scores of the network were evaluated. Position was decoded from the population activity using a point process filter to investigate the contributions of network architecture on spatial encoding. RESULTS: The model predicted the emergence of anatomical gradients within the dentate gyrus for place field size and spatial information along its dorso-ventral axis, which were dependent on the extents of the entorhinal axon terminal fields. The decoding results revealed an optimal performance at an axon terminal field extent of 2 mm that lies within the biological range. CONCLUSION: The axonal anatomy mediates a tradeoff between encoding multiple place field sizes or achieving a high spatial information score, and the combination of both properties is necessary to maximize spatial encoding by a network. SIGNIFICANCE: In total, this paper establishes a mechanistic neuronal network model that, in concert with information-theoretic and statistical methods, can be used to investigate how lower level properties contribute to higher level function.


Asunto(s)
Axones/fisiología , Giro Dentado/fisiología , Corteza Entorrinal/fisiología , Algoritmos , Animales , Axones/ultraestructura , Conducta Animal , Mapeo Encefálico , Simulación por Computador , Giro Dentado/ultraestructura , Corteza Entorrinal/ultraestructura , Modelos Neurológicos , Vías Nerviosas/fisiología , Vías Nerviosas/ultraestructura , Ratas , Navegación Espacial/fisiología
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1956-1959, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31946282

RESUMEN

The molecular mechanisms underlying Alzheimer's disease (AD) have been and are still under heavy scrutiny to better understand what leads to the onset and progression of the disease, and to design and develop efficacious therapeutic strategies. These decade-long studies have taught us a lot regarding the various molecular pathways involved in the pathology, but a complete dynamic picture of the underlying pathological mechanisms is still missing.We propose to provide a technological answer to fill this gap by developing and using a computational approach that integrates AD-related experimental findings and their effects on multiple aspects of neuronal function. The present study focuses on implementing one known pathogenic process: the binding of amyloid beta, the hallmark of AD, on NMDA receptors, receptors present in the main type of excitatory synapses in the brain, thereby affecting synaptic transmission and downstream pathways. We describe model implementation and calibration; we then quantify the downstream effects of this disruption both in terms of electrical activity (changes in short-term spiking activity of the postsynaptic neuron), and biochemical pathways activation through changes in calcium dynamics (an important trigger to longer-term changes). The computational approach outlined constitutes an insightful instrument to examine the downstream consequences of multiple pathogenic dysfunctions on higher level observables and sets the path for in-silico discovery and testing of therapeutic agents.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Transmisión Sináptica , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Humanos , Modelos Teóricos , Receptores de N-Metil-D-Aspartato , Sinapsis
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 6137-6140, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441735

RESUMEN

Spatial information is encoded by the hippocampus, and the factors that contribute to the amount of information that can be encoded and the transformation of spatial information through the trisynaptic circuit remain an important issue. A large-scale neuronal network model of the rat entorhinal-dentate system was developed with multicompartmental representations of the neurons within the dentate gyrus. Spatial information was introduced to the network via grid cell activity, and the spatial information encoding capabilities of the network were assessed using a recursive decoding algorithm to estimate the position of a virtual rat using the dentate activity. To obtain a measure for the information that the network could convey, decoding error was calculated for different decoding population sizes. Decoding error decreased exponentially as a function of population size. Therefore, the time constant and the asymptote of the error curve could be used as metrics to compare the changes in encoding performance. In conjunction with the large-scale model, this paradigm can be used to characterize how neural properties, network composition, and the interactions between different subfields affect spatial information encoding.


Asunto(s)
Giro Dentado , Neuronas , Algoritmos , Animales , Corteza Entorrinal , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...