Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Commun ; 15(1): 888, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291025

RESUMEN

To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.


Asunto(s)
Glándula Tiroides , Tiroxina , Humanos , Glándula Tiroides/metabolismo , Tiroxina/metabolismo , Estudio de Asociación del Genoma Completo , Triyodotironina/metabolismo , Tirotropina/metabolismo
2.
Nat Commun ; 15(1): 586, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38233393

RESUMEN

X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.


Asunto(s)
Andrógenos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Femenino , Andrógenos/genética , Riñón , Cromosomas Humanos X/genética , Elementos de Respuesta , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Tetraspaninas/genética
3.
NIHR Open Res ; 3: 20, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881452

RESUMEN

Background: People with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) experience core symptoms of post-exertional malaise, unrefreshing sleep, and cognitive impairment. Despite numbering 0.2-0.4% of the population, no laboratory test is available for their diagnosis, no effective therapy exists for their treatment, and no scientific breakthrough regarding pathogenesis has been made. It remains unknown, despite decades of small-scale studies, whether individuals experience different types of ME/CFS separated by onset-type, sex or age. Methods: DecodeME is a large population-based study of ME/CFS that recruited 17,074 participants in the first 3 months following full launch. Detailed questionnaire responses from UK-based participants who all reported being diagnosed with ME/CFS by a health professional provided an unparalleled opportunity to investigate, using logistic regression, whether ME/CFS severity or onset type is significantly associated with sex, age, illness duration, comorbid conditions or symptoms. Results: The well-established sex-bias among ME/CFS patients is evident in the initial DecodeME cohort: 83.5% of participants were females. What was not known previously was that females tend to have more comorbidities than males. Moreover, being female, being older and being over 10 years from ME/CFS onset are significantly associated with greater severity. Five different ME/CFS onset types were examined in the self-reported data: those with ME/CFS onset (i) after glandular fever (infectious mononucleosis); (ii) after COVID-19 infection; (iii) after other infections; (iv) without an infection at onset; and, (v) where the occurrence of an infection at or preceding onset is not known. Among other findings, ME/CFS onset with unknown infection status was significantly associated with active fibromyalgia. Conclusions: DecodeME participants differ in symptoms, comorbid conditions and/or illness severity when stratified by their sex-at-birth and/or infection around the time of ME/CFS onset.


Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) is a chronic disease that affects an estimated 250,000 people in the UK. Its defining symptom is post-exertional malaise, an excessive delayed worsening of symptoms following even minor physical or mental exertion. For those with it, ME/CFS means disability and poor quality of life. DecodeME is a research study which is looking for DNA differences between people with ME/CFS and people without any health problems. People with ME/CFS who take part in DecodeME complete a questionnaire that assesses their symptoms and whether they will then be invited to donate a DNA sample. This paper analyses the answers to this questionnaire; we will publish results of the DNA analysis separately. So far, more than 17 thousand people with ME/CFS have completed the DecodeME questionnaire. Their answers help us to address the question: "Are there different types of ME/CFS linked to different causes and how severe it becomes?" Results show that people with ME/CFS do not form a single group reporting similar symptoms and additional medical conditions. Instead, participants who had an infection at the start of their ME/CFS reported a different pattern of symptoms and conditions compared to those without an infection. It is well known that most people with ME/CFS are females. What was not clear previously was that females tend to have more additional health conditions. Also, being female, being older and being over 10 years from ME/CFS onset all make it more likely that someone is more severely affected by their ME/CFS. These findings could indicate that by studying people with different ME/CFS onset-types separately ­ rather than analysing all people with ME/CFS together ­ it will be easier to understand what is going wrong.

4.
Front Genet ; 14: 1171217, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621707

RESUMEN

Background: Genome-wide association studies (GWAS) for corneal resistance factor (CRF) have identified 100s of loci and proved useful to uncover genetic determinants for keratoconus, a corneal ectasia of early-adulthood onset and common indication of corneal transplantation. In the current absence of studies to probe the impact of candidate causal variants in the cornea, we aimed to fill some of this knowledge gap by leveraging tissue-shared genetic effects. Methods: 181 CRF signals were examined for evidence of colocalization with genetic signals affecting steady-state gene transcription and splicing in adult, non-eye, tissues of the Genotype-Tissue Expression (GTEx) project. Expression of candidate causal genes thus nominated was evaluated in single cell transcriptomes from adult cornea, limbus and conjunctiva. Fine-mapping and colocalization of CRF and keratoconus GWAS signals was also deployed to support their sharing causal variants. Results and discussion: 26.5% of CRF causal signals colocalized with GTEx v8 signals and nominated genes enriched in genes with high and specific expression in corneal stromal cells amongst tissues examined. Enrichment analyses carried out with nearest genes to all 181 CRF GWAS signals indicated that stromal cells of the limbus could be susceptible to signals that did not colocalize with GTEx's. These cells might not be well represented in GTEx and/or the genetic associations might have context specific effects. The causal signals shared with GTEx provide new insights into mediation of CRF genetic effects, including modulation of splicing events. Functionally relevant roles for several implicated genes' products in providing tensile strength, mechano-sensing and signaling make the corresponding genes and regulatory variants prime candidates to be validated and their roles and effects across tissues elucidated. Colocalization of CRF and keratoconus GWAS signals strengthened support for shared causal variants but also highlighted many ways into which likely true shared signals could be missed when using readily available GWAS summary statistics.

5.
Circulation ; 145(18): 1398-1411, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35387486

RESUMEN

BACKGROUND: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Estudios Transversales , Estudio de Asociación del Genoma Completo , Humanos , Receptores de Coronavirus , SARS-CoV-2
6.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35216288

RESUMEN

Thyroglobulin (Tg) is an iodoglycoprotein produced by thyroid follicular cells which acts as an essential substrate for thyroid hormone synthesis. To date, only one genome-wide association study (GWAS) of plasma Tg levels has been performed by our research group. Utilizing recent advancements in computation and modeling, we apply a Bayesian approach to the probabilistic inference of the genetic architecture of Tg. We fitted a Bayesian sparse linear mixed model (BSLMM) and a frequentist linear mixed model (LMM) of 7,289,083 variants in 1096 healthy European-ancestry participants of the Croatian Biobank. Meta-analysis with two independent cohorts (total n = 2109) identified 83 genome-wide significant single nucleotide polymorphisms (SNPs) within the ST6GAL1 gene (p<5×10-8). BSLMM revealed additional association signals on chromosomes 1, 8, 10, and 14. For ST6GAL1 and the newly uncovered genes, we provide physiological and pathophysiological explanations of how their expression could be associated with variations in plasma Tg levels. We found that the SNP-heritability of Tg is 17% and that 52% of this variation is due to a small number of 16 variants that have a major effect on Tg levels. Our results suggest that the genetic architecture of plasma Tg is not polygenic, but influenced by a few genes with major effects.


Asunto(s)
Estudio de Asociación del Genoma Completo , Tiroglobulina , Teorema de Bayes , Estudio de Asociación del Genoma Completo/métodos , Genómica , Humanos , Polimorfismo de Nucleótido Simple , Tiroglobulina/genética
7.
Nat Genet ; 53(6): 840-860, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34059833

RESUMEN

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.


Asunto(s)
Glucemia/genética , Carácter Cuantitativo Heredable , Población Blanca/genética , Alelos , Epigénesis Genética , Perfilación de la Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/metabolismo , Humanos , Herencia Multifactorial/genética , Mapeo Físico de Cromosoma , Sitios de Carácter Cuantitativo/genética
8.
Front Genet ; 12: 791712, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069690

RESUMEN

We describe a genome-wide analytical approach, SNP and Haplotype Regional Heritability Mapping (SNHap-RHM), that provides regional estimates of the heritability across locally defined regions in the genome. This approach utilises relationship matrices that are based on sharing of SNP and haplotype alleles at local haplotype blocks delimited by recombination boundaries in the genome. We implemented the approach on simulated data and show that the haplotype-based regional GRMs capture variation that is complementary to that captured by SNP-based regional GRMs, and thus justifying the fitting of the two GRMs jointly in a single analysis (SNHap-RHM). SNHap-RHM captures regions in the genome contributing to the phenotypic variation that existing genome-wide analysis methods may fail to capture. We further demonstrate that there are real benefits to be gained from this approach by applying it to real data from about 20,000 individuals from the Generation Scotland: Scottish Family Health Study. We analysed height and major depressive disorder (MDD). We identified seven genomic regions that are genome-wide significant for height, and three regions significant at a suggestive threshold (p-value < 1 × 10-5) for MDD. These significant regions have genes mapped to within 400 kb of them. The genes mapped for height have been reported to be associated with height in humans. Similarly, those mapped for MDD have been reported to be associated with major depressive disorder and other psychiatry phenotypes. The results show that SNHap-RHM presents an exciting new opportunity to analyse complex traits by allowing the joint mapping of novel genomic regions tagged by either SNPs or haplotypes, potentially leading to the recovery of some of the "missing" heritability.

9.
Commun Biol ; 3(1): 762, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311554

RESUMEN

Corneal resistance factor (CRF) is altered during corneal diseases progression. Genome-wide-association studies (GWAS) indicated potential CRF and disease genetics overlap. Here, we characterise 135 CRF loci following GWAS in 76029 UK Biobank participants. Enrichment of extra-cellular matrix gene-sets, genetic correlation with corneal thickness (70% (SE = 5%)), reported keratoconus risk variants at 13 loci, all support relevance to corneal stroma biology. Fine-mapping identifies a subset of 55 highly likely causal variants, 91% of which are non-coding. Genomic features enrichments, using all associated variants, also indicate prominent regulatory causal role. We newly established open chromatin landscapes in two widely-used human cornea immortalised cell lines using ATAC-seq. Variants associated with CRF were significantly enriched in regulatory regions from the corneal stroma-derived cell line and enrichment increases to over 5 fold for variants prioritised by fine-mapping-including at GAS7, SMAD3 and COL6A1 loci. Our analysis generates many hypotheses for future functional validation of aetiological mechanisms.


Asunto(s)
Mapeo Cromosómico , Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo , Alelos , Biología Computacional/métodos , Enfermedades de la Córnea/etiología , Enfermedades de la Córnea/metabolismo , Enfermedades de la Córnea/patología , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Anotación de Secuencia Molecular , Especificidad de Órganos , Polimorfismo de Nucleótido Simple , Reino Unido
10.
Nat Metab ; 2(10): 1135-1148, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33067605

RESUMEN

Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.


Asunto(s)
Sistema Cardiovascular/metabolismo , Mapeo Cromosómico , Sistemas de Liberación de Medicamentos , Genómica , Transportador 1 de Casete de Unión a ATP/genética , Asma/genética , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades Inflamatorias del Intestino/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Desequilibrio de Ligamiento , Análisis de la Aleatorización Mendeliana , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteoma , Sitios de Carácter Cuantitativo , Receptores CCR2/genética , Receptores CCR5/genética
11.
Clin Epigenetics ; 12(1): 113, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32718350

RESUMEN

BACKGROUND: Chronic systemic inflammation has been associated with incident dementia, but its association with age-related cognitive decline is less clear. The acute responses of many inflammatory biomarkers mean they may provide an unreliable picture of the chronicity of inflammation. Recently, a large-scale epigenome-wide association study identified DNA methylation correlates of C-reactive protein (CRP)-a widely used acute-phase inflammatory biomarker. DNA methylation is thought to be relatively stable in the short term, marking it as a potentially useful signature of exposure. METHODS: We utilise a DNA methylation-based score for CRP and investigate its trajectories with age, and associations with cognitive ability in comparison with serum CRP and a genetic CRP score in a longitudinal study of older adults (n = 889) and a large, cross-sectional cohort (n = 7028). RESULTS: We identified no homogeneous trajectories of serum CRP with age across the cohorts, whereas the epigenetic CRP score was consistently found to increase with age (standardised ß = 0.07 and 0.01) and to do so more rapidly in males compared to females. Additionally, the epigenetic CRP score had higher test-retest reliability compared to serum CRP, indicating its enhanced temporal stability. Higher serum CRP was not found to be associated with poorer cognitive ability (standardised ß = - 0.08 and - 0.05); however, a consistent negative association was identified between cognitive ability and the epigenetic CRP score in both cohorts (standardised ß = - 0.15 and - 0.08). CONCLUSIONS: An epigenetic proxy of CRP may provide a more reliable signature of chronic inflammation, allowing for more accurate stratification of individuals, and thus clearer inference of associations with incident health outcomes.


Asunto(s)
Envejecimiento/sangre , Disfunción Cognitiva/epidemiología , Epigenómica/métodos , Inflamación/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Disfunción Cognitiva/sangre , Estudios de Cohortes , Comorbilidad , Estudios Transversales , Femenino , Humanos , Inflamación/sangre , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Escocia/epidemiología , Adulto Joven
12.
PLoS Genet ; 16(7): e1008785, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32628676

RESUMEN

To efficiently transform genetic associations into drug targets requires evidence that a particular gene, and its encoded protein, contribute causally to a disease. To achieve this, we employ a three-step proteome-by-phenome Mendelian Randomization (MR) approach. In step one, 154 protein quantitative trait loci (pQTLs) were identified and independently replicated. From these pQTLs, 64 replicated locally-acting variants were used as instrumental variables for proteome-by-phenome MR across 846 traits (step two). When its assumptions are met, proteome-by-phenome MR, is equivalent to simultaneously running many randomized controlled trials. Step 2 yielded 38 proteins that significantly predicted variation in traits and diseases in 509 instances. Step 3 revealed that amongst the 271 instances from GeneAtlas (UK Biobank), 77 showed little evidence of pleiotropy (HEIDI), and 92 evidence of colocalization (eCAVIAR). Results were wide ranging: including, for example, new evidence for a causal role of tyrosine-protein phosphatase non-receptor type substrate 1 (SHPS1; SIRPA) in schizophrenia, and a new finding that intestinal fatty acid binding protein (FABP2) abundance contributes to the pathogenesis of cardiovascular disease. We also demonstrated confirmatory evidence for the causal role of four further proteins (FGF5, IL6R, LPL, LTA) in cardiovascular disease risk.


Asunto(s)
Enfermedades Cardiovasculares/genética , Análisis de la Aleatorización Mendeliana , Proteoma/genética , Esquizofrenia/genética , Antígenos de Diferenciación/genética , Enfermedades Cardiovasculares/patología , Proteínas de Unión a Ácidos Grasos/genética , Femenino , Factor 5 de Crecimiento de Fibroblastos/genética , Estudios de Asociación Genética/métodos , Humanos , Lipoproteína Lipasa/genética , Linfotoxina-alfa/genética , Masculino , Sitios de Carácter Cuantitativo , Receptores Inmunológicos/genética , Receptores de Interleucina-6/genética , Esquizofrenia/patología
13.
Nat Commun ; 11(1): 2542, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439900

RESUMEN

The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease.


Asunto(s)
Arritmias Cardíacas/genética , Electrocardiografía , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Arritmias Cardíacas/fisiopatología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/fisiopatología , Endofenotipos , Femenino , Expresión Génica , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Herencia Multifactorial , Sitios de Carácter Cuantitativo/genética
14.
Wellcome Open Res ; 5: 111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33728380

RESUMEN

Background: Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females. Methods: We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium. Results: Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P<5x10 -8) interactions with sex on lung function, and 21 showed suggestive interactions (P<1x10 -6). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV 1) (P=3.15x10 -15), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV 1 more in males (untransformed FEV 1 ß=0.028 [SE 0.0022] litres) than females (ß=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein ( HHIP) gene and was previously associated with lung function and HHIP lung expression. We found HHIP expression was significantly different between the sexes (P=6.90x10 -6), but we could not detect sex differential effects of rs7697189 on expression. Conclusions: We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the HHIP gene. Establishing the mechanism by which HHIP SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.

15.
Hum Mol Genet ; 29(4): 689-702, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31816047

RESUMEN

Retinal detachment (RD) is a serious and common condition, but genetic studies to date have been hampered by the small size of the assembled cohorts. In the UK Biobank data set, where RD was ascertained by self-report or hospital records, genetic correlations between RD and high myopia or cataract operation were, respectively, 0.46 (SE = 0.08) and 0.44 (SE = 0.07). These correlations are consistent with known epidemiological associations. Through meta-analysis of genome-wide association studies using UK Biobank RD cases (N = 3 977) and two cohorts, each comprising ~1 000 clinically ascertained rhegmatogenous RD patients, we uncovered 11 genome-wide significant association signals. These are near or within ZC3H11B, BMP3, COL22A1, DLG5, PLCE1, EFEMP2, TYR, FAT3, TRIM29, COL2A1 and LOXL1. Replication in the 23andMe data set, where RD is self-reported by participants, firmly establishes six RD risk loci: FAT3, COL22A1, TYR, BMP3, ZC3H11B and PLCE1. Based on the genetic associations with eye traits described to date, the first two specifically impact risk of a RD, whereas the last four point to shared aetiologies with macular condition, myopia and glaucoma. Fine-mapping prioritized the lead common missense variant (TYR S192Y) as causal variant at the TYR locus and a small set of credible causal variants at the FAT3 locus. The larger study size presented here, enabled by resources linked to health records or self-report, provides novel insights into RD aetiology and underlying pathological pathways.


Asunto(s)
Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Desprendimiento de Retina/epidemiología , Desprendimiento de Retina/genética , Estudios de Casos y Controles , Estudios de Cohortes , Humanos , Metaanálisis como Asunto , Desprendimiento de Retina/patología , Suecia/epidemiología , Reino Unido/epidemiología
16.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794020

RESUMEN

INTRODUCTION: Thyroid peroxidase (TPO) and thyroglobulin (Tg) are main components of the thyroid gland and play an essential role in thyroid hormone synthesis. The development of antibodies to thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) is the major diagnostic hallmark and early indicator of autoimmune thyroid disease. TPOAb and TgAb are under strong genetic influence; however, genetic factors that determine thyroid antibody positivity are largely unknown. MATERIALS AND METHODS: To identify novel loci associated with TPOAb and/or TgAb positivity, we performed a genome-wide meta-analysis in a total of 2613 individuals from Croatia. Participants with elevated plasma TPOAb and/or TgAb were defined as cases (N = 619) and those with TPOAb and TgAb within reference values were defined as controls (N = 1994). RESULTS: We identified 2 novel loci, of which 1 is located within the YES1 gene (rs77284350, P = 1.50 × 10-8), and the other resides within the IRF8 gene (rs16939945, P = 5.04 × 10-8). CONCLUSIONS: Although the observed variants were associated with TPOAb and TgAb positivity for the first time, both YES1 and IRF8 were previously linked to susceptibility to other autoimmune diseases, and represent plausible biological candidates. This study adds to the knowledge of genetics underlying thyroid antibodies and provides a good basis for further research.


Asunto(s)
Autoanticuerpos/genética , Predisposición Genética a la Enfermedad/genética , Factores Reguladores del Interferón/genética , Proteínas Proto-Oncogénicas c-yes/genética , Tiroiditis Autoinmune/genética , Adulto , Anciano , Autoanticuerpos/sangre , Croacia , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Yoduro Peroxidasa/inmunología , Masculino , Persona de Mediana Edad , Tiroglobulina/inmunología , Tiroiditis Autoinmune/sangre , Tiroiditis Autoinmune/inmunología
17.
Commun Biol ; 2: 435, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798171

RESUMEN

A new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH.


Asunto(s)
Estudio de Asociación del Genoma Completo , Disco Óptico/metabolismo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Estudios de Casos y Controles , Biología Computacional , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Glaucoma/diagnóstico , Glaucoma/genética , Humanos , Anotación de Secuencia Molecular , Enfermedades del Nervio Óptico/genética , Enfermedades del Nervio Óptico/patología , Polimorfismo de Nucleótido Simple , Transducción de Señal
18.
Nat Genet ; 51(10): 1459-1474, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578528

RESUMEN

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Marcadores Genéticos , Gota/sangre , Enfermedades Metabólicas/sangre , Polimorfismo de Nucleótido Simple , Transducción de Señal , Ácido Úrico/sangre , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Estudios de Cohortes , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Gota/epidemiología , Gota/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética , Humanos , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Enfermedades Metabólicas/epidemiología , Enfermedades Metabólicas/genética , Proteínas de Neoplasias/genética , Especificidad de Órganos
19.
Sci Rep ; 9(1): 10964, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358886

RESUMEN

The Viking Health Study Shetland is a population-based research cohort of 2,122 volunteer participants with ancestry from the Shetland Isles in northern Scotland. The high kinship and detailed phenotype data support a range of approaches for associating rare genetic variants, enriched in this isolate population, with quantitative traits and diseases. As an exemplar, the c.1750G > A; p.Gly584Ser variant within the coding sequence of the KCNH2 gene implicated in Long QT Syndrome (LQTS), which occurred once in 500 whole genome sequences from this population, was investigated. Targeted sequencing of the KCNH2 gene in family members of the initial participant confirmed the presence of the sequence variant and identified two further members of the same family pedigree who shared the variant. Investigation of these three related participants for whom single nucleotide polymorphism (SNP) array genotypes were available allowed a unique shared haplotype of 1.22 Mb to be defined around this locus. Searching across the full cohort for this haplotype uncovered two additional apparently unrelated individuals with no known genealogical connection to the original kindred. All five participants with the defined haplotype were shown to share the rare variant by targeted Sanger sequencing. If this result were verified in a healthcare setting, it would be considered clinically actionable, and has been actioned in relatives ascertained independently through clinical presentation. The General Practitioners of four study participants with the rare variant were alerted to the research findings by letters outlining the phenotype (prolonged electrocardiographic QTc interval). A lack of detectable haplotype sharing between c.1750G > A; p.Gly584Ser chromosomes from previously reported individuals from Finland and those in this study from Shetland suggests that this mutation has arisen more than once in human history. This study showcases the potential value of isolate population-based research resources for genomic medicine. It also illustrates some challenges around communication of actionable findings in research participants in this context.


Asunto(s)
Canal de Potasio ERG1/genética , Haplotipos , Síndrome de QT Prolongado/genética , Polimorfismo de Nucleótido Simple , Anciano , Estudios de Cohortes , Electrocardiografía , Femenino , Humanos , Síndrome de QT Prolongado/diagnóstico , Masculino , Persona de Mediana Edad , Linaje , Escocia
20.
Nat Genet ; 51(6): 957-972, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31152163

RESUMEN

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.


Asunto(s)
Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/fisiopatología , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Tasa de Filtración Glomerular , Humanos , Patrón de Herencia , Pruebas de Función Renal , Fenotipo , Polimorfismo de Nucleótido Simple , Insuficiencia Renal Crónica/orina , Uromodulina/orina , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...