Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(1): 103185, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37980741

RESUMEN

Tracking group-housed individual broilers using video can provide valuable information on their health, welfare, and performance, allowing breeders to identify novel or indicator traits that aid genetic improvement. However, their similar appearances make tracking individual broilers in a group-housed setting challenging. This study aimed to analyze broiler tracking on video (number of ID-switches, tracking time and distance) and examined potential tracking errors (ID-losses - location, proximity, kinematics) in an experimental pen to enable broiler locomotion phenotyping. This comprehensive analysis provided insights into the potential and challenges of tracking group-housed broilers on video with regards to phenotyping broiler locomotion. Thirty-nine broilers, of which 35 noncolor marked, were housed in an experimental pen (1.80 × 2.61 m), and only data at 18 d of age were used. A YOLOv7-tiny model was trained (n = 140), validated (n = 30), and tested (n = 30) on 200 annotated frames to detect the broilers. On the test set, YOLOv7-tiny had a precision, recall, and average precision (@0.5 - Intersection over Union threshold) of 0.99. A multi-object tracker (SORT) was implemented and evaluated on ground-truth trajectories of thirteen white broilers based on 136 min of video data (1-min intervals). The number of ID-switches varied from 5 to 20 (mean: 9.92) per ground-truth trajectory, tracking times ranged from 1 (by definition) to 51 min (mean: 12.36), and tracking distances ranged from 0.01 to 17.07 meters (mean: 1.89) per tracklet. Tracking errors primarily occurred when broilers were occluded by the drinker, and relatively frequently when broilers were in close proximity (within 10 cm), with velocity and acceleration appearing to have a lesser impact on tracking errors. The study establishes a 'baseline' for future research and identified the potential and challenges of tracking group-housed individual broilers. The results highlighted the importance of addressing ID-switches, identified potential tracking algorithm improvements, and emphasized the need for an external animal identification system to enable objective, simultaneous and semi-continuous locomotion phenotyping of group-housed individual broilers.


Asunto(s)
Pollos , Locomoción , Animales , Pollos/genética , Vivienda para Animales
2.
J Dairy Sci ; 106(8): 5218-5241, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37349208

RESUMEN

Genotype data from dairy cattle selection programs have greatly facilitated GWAS to identify variants related to economic traits. Results can enhance the accuracy of genomic prediction, analyze more complex models that go beyond additive effects, elucidate the genetic architecture of a trait, and finally, decipher the underlying biology of traits. The entire process, comprising data generation, quality control, statistical analyses, interpretation of association results, and linking results to biology should be designed and executed to minimize the generation of false-positive and false-negative associations and misleading links to biological processes. This review aims to provide general guidelines for data analysis that address data quality control, association tests, adjustment for population stratification, and significance evaluation to improve the reliability of conclusions. We also provide guidance on post-GWAS strategy and the interpretation of results. These guidelines are tailored to dairy cattle, which are characterized by long-range linkage disequilibrium, large half-sib families, and routinely collected phenotypes, requiring different approaches than those applied in human GWAS. We discuss common limitations and challenges that have been overlooked in the analysis and interpretation of GWAS to identify candidate sequence variants in dairy cattle.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Bovinos/genética , Humanos , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Estudio de Asociación del Genoma Completo/métodos , Reproducibilidad de los Resultados , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
3.
BMC Genomics ; 24(1): 208, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072725

RESUMEN

BACKGROUND: De novo mutations arising in the germline are a source of genetic variation and their discovery broadens our understanding of genetic disorders and evolutionary patterns. Although the number of de novo single nucleotide variants (dnSNVs) has been studied in a number of species, relatively little is known about the occurrence of de novo structural variants (dnSVs). In this study, we investigated 37 deeply sequenced pig trios from two commercial lines to identify dnSVs present in the offspring. The identified dnSVs were characterised by identifying their parent of origin, their functional annotations and characterizing sequence homology at the breakpoints. RESULTS: We identified four swine germline dnSVs, all located in intronic regions of protein-coding genes. Our conservative, first estimate of the swine germline dnSV rate is 0.108 (95% CI 0.038-0.255) per generation (one dnSV per nine offspring), detected using short-read sequencing. Two detected dnSVs are clusters of mutations. Mutation cluster 1 contains a de novo duplication, a dnSNV and a de novo deletion. Mutation cluster 2 contains a de novo deletion and three de novo duplications, of which one is inverted. Mutation cluster 2 is 25 kb in size, whereas mutation cluster 1 (197 bp) and the other two individual dnSVs (64 and 573 bp) are smaller. Only mutation cluster 2 could be phased and is located on the paternal haplotype. Mutation cluster 2 originates from both micro-homology as well as non-homology mutation mechanisms, where mutation cluster 1 and the other two dnSVs are caused by mutation mechanisms lacking sequence homology. The 64 bp deletion and mutation cluster 1 were validated through PCR. Lastly, the 64 bp deletion and the 573 bp duplication were validated in sequenced offspring of probands with three generations of sequence data. CONCLUSIONS: Our estimate of 0.108 dnSVs per generation in the swine germline is conservative, due to our small sample size and restricted possibilities of dnSV detection from short-read sequencing. The current study highlights the complexity of dnSVs and shows the potential of breeding programs for pigs and livestock species in general, to provide a suitable population structure for identification and characterisation of dnSVs.


Asunto(s)
Células Germinativas , Mutación de Línea Germinal , Animales , Porcinos/genética , Mutación , Secuenciación Completa del Genoma , Haplotipos
4.
Poult Sci ; 102(3): 102412, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36621101

RESUMEN

Phenotypes on individual animals are required for breeding programs to be able to select for traits. However, phenotyping individual animals can be difficult and time-consuming, especially for traits related to health, welfare, and performance. Individual broiler behavior could serve as a proxy for these traits when recorded automatically and reliably on many animals. Sensors could record individual broiler behavior, yet different sensors can differ in their assessment. In this study a comparison was made between a passive radio frequency identification (RFID) system (grid of antennas underneath the pen) and video tracking for the determination of location and movement of 3 color-marked broilers at d 18. Furthermore, a systems comparison of derived behavioral metrics such as space usage, locomotion activity and apparent feeding and drinking behavior was made. Color-marked broilers simplified the computer vision task for YOLOv5 to detect, track, and identify the animals. Animal locations derived from the RFID-system and based on video were largely in agreement. Most location differences (77.5%) were within the mean radius of the antennas' enclosing circle (≤128 px, 28.15 cm), and 95.3% of the differences were within a one antenna difference (≤256 px, 56.30 cm). Animal movement was not always registered by the RFID-system whereas video was sensitive to detection noise and the animal's behavior (e.g., pecking). The method used to determine location and the systems' sensitivities to movement led to differences in behavioral metrics. Behavioral metrics derived from video are likely more accurate than RFID-system derived behavioral metrics. However, at present, only the RFID-system can provide individual identification for non-color marked broilers. A combination of verifiable and detailed video with the unique identification of RFID could make it possible to identify, describe, and quantify a wide range of individual broiler behaviors.


Asunto(s)
Dispositivo de Identificación por Radiofrecuencia , Animales , Dispositivo de Identificación por Radiofrecuencia/métodos , Pollos , Conducta de Ingestión de Líquido , Locomoción
5.
J Dairy Sci ; 102(12): 11104-11115, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31606217

RESUMEN

Our aim was to estimate genetic parameters of atypical reproductive patterns and estimate their genetic correlation with milk production and classical fertility traits for commercial dairy cows. In contrast with classical fertility traits, atypical reproductive patterns based on in-line milk progesterone profiles might have higher heritability and lower genetic correlation with milk production. We had in-line milk progesterone profiles available for 12,046 cycles in 4,170 lactations of 2,589 primiparous and multiparous cows (mainly Holstein Friesian) from 14 herds. Based on progesterone profiles, 5 types of atypical reproductive patterns in a lactation were defined: delayed ovulation types I and II, persistent corpus luteum types I and II, and late embryo mortality. These atypical patterns were detected in 14% (persistent corpus luteum type II) to 21% (persistent corpus luteum type I) of lactations. In 47% of lactations, at least 1 atypical pattern was detected. Threshold model heritabilities for atypical reproduction patterns ranged between 0.03 and 0.14 and for most traits were slightly higher compared with classical fertility traits. The genetic correlation between milk yield and calving interval was 0.56, whereas genetic correlations between milk yield and atypical reproductive patterns ranged between -0.02 and 0.33. Although most of these correlations between milk yield and atypical reproductive patterns are still unfavorable, they are lower compared with the correlations between classical fertility traits and milk yield. Therefore selection against atypical reproductive patterns may relax some constraints in current dairy breeding programs, to enhance genetic progress in both fertility and milk yield at a steady pace. However, as long as the target trait for fertility is calving interval, atypical reproductive patterns will not add additional value to the breeding goal in the near future due to the low number of available records.


Asunto(s)
Bovinos/genética , Leche/química , Progesterona/análisis , Reproducción/genética , Animales , Cruzamiento , Bovinos/fisiología , Cuerpo Lúteo , Femenino , Fertilidad/genética , Lactancia/genética , Paridad , Fenotipo , Embarazo
6.
J Dairy Sci ; 101(6): 5177-5193, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29525306

RESUMEN

The main objective of this study was to investigate the benefit of accuracy of genomic prediction when combining records for an intermediate physiological phenotype in a training population with records for a traditional phenotype. Fertility was used as a case study, where commencement of luteal activity (C-LA) was the physiological phenotype, whereas the interval from calving to first service and calving interval were the traditional phenotypes. The potential accuracy of across-country genomic prediction and optimal recording strategies of C-LA were also investigated in terms of the number of farms and number of repeated records for C-LA. Predicted accuracy was obtained by estimating population parameters for the traits in a data set of 3,136 Holstein Friesian cows with 8,080 lactations and using a deterministic prediction equation. The effect of genetic correlation, heritability, and reliability of C-LA on the accuracy of genomic prediction were investigated. When the existing training population was 10,000 bulls with reliable estimated breeding value for the traditional trait, predicted accuracy for the physiological trait increased from 0.22 to 0.57 when 15,000 cows with C-LA records were added to the bull training population; but, when the interest was in predicting the traditional trait, we found no benefit from the additional recording. When the genetic correlation was higher between the physiological and traditional traits (0.7 instead of 0.3), accuracy increased less when adding the 15.000 cows with C-LA (from 0.51 to 0.63). In across-country predictions, we observed little to no increase in accuracy of the intermediate physiological phenotype when the training population from Sweden was large, but when accuracy increased the training population was small (200 cows), from 0.19 to 0.31 when 15,000 cows were added from the Netherlands (genetic correlation of 0.5 between countries), and from 0.19 to 0.48 for genetic correlation of 0.9. The predicted accuracy initially increased substantially when recording on the same farm was extended and multiple C-LA records per cow were used in prediction compared with single records; that is, accuracy increased from 0.33 with single records to 0.38 with multiple records (on average 1.6 records per cow) from 2 yr of recording C-LA. But, when the number C-LA per cow increased beyond 2 yr of recording, we noted no substantial benefit in accuracy from multiple records. For example, for 5 yr of recording (on average 2.5 records per cow), accuracy was 0.47; on doubling the recording period to 10 yr (on average 3.1 records per cow), accuracy increased by 0.07 units, whereas when C-LA was recorded for 15 yr (on average 3.3 records per cow) accuracy increased only by 0.05 units. Therefore, for genomic prediction using expensive equipment to record traits for training populations, it is important to optimize the recording strategy. The focus should be on recording more cows rather than continuous recording on the same cows.


Asunto(s)
Cruzamiento , Bovinos/genética , Fertilidad/fisiología , Leche/química , Progesterona/análisis , Animales , Femenino , Genómica , Masculino , Países Bajos , Núcleo Familiar , Fenotipo , Reproducibilidad de los Resultados , Suecia
7.
J Dairy Sci ; 99(7): 5470-5485, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27157577

RESUMEN

Endocrine fertility traits, which are defined from progesterone concentration levels in milk, are interesting indicators of dairy cow fertility because they more directly reflect the cows own reproductive physiology than classical fertility traits, which are more biased by farm management decisions. The aim of this study was to detect quantitative trait loci (QTL) for 7 endocrine fertility traits in dairy cows by performing a genome-wide association study with 85k single nucleotide polymorphisms (SNP), and then fine-map targeted QTL regions, using imputed sequence variants. Two classical fertility traits were also analyzed for QTL with 85k SNP. The association between a SNP and a phenotype was assessed by single-locus regression for each SNP, using a linear mixed model that included a random polygenic effect. A total of 2,447 Holstein Friesian cows with 5,339 lactations with both phenotypes and genotypes were used for association analysis. Heritability estimates ranged from 0.09 to 0.15 for endocrine fertility traits and 0.03 to 0.10 for classical fertility traits. The genome-wide association study identified 17 QTL regions for endocrine fertility traits on Bos taurus autosomes (BTA) 2, 3, 8, 12, 15, 17, 23, and 25. The highest number (5) of QTL regions from the genome-wide association study was identified for the endocrine trait "proportion of samples with luteal activity." Overlapping QTL regions were found between endocrine traits on BTA 2, 3, and 17. For the classical trait calving to first service, 3 QTL regions were identified on BTA 3, 15, and 23, and an overlapping region was identified on BTA 23 with endocrine traits. Fine-mapping target regions for the endocrine traits on BTA 2 and 3 using imputed sequence variants confirmed the QTL from the genome-wide association study, and identified several associated variants that can contribute to an index of markers for genetic improvement of fertility. Several potential candidate genes underlying endocrine fertility traits were also identified in the target regions and are discussed. However, due to high linkage disequilibrium, it was not possible to specify genes or polymorphisms as causal factors for any of the regions.


Asunto(s)
Bovinos/genética , Fertilidad/genética , Estudio de Asociación del Genoma Completo/veterinaria , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Animales , Femenino , Variación Genética , Genotipo , Lactancia , Modelos Lineales , Desequilibrio de Ligamiento , Leche/química , Fenotipo , Progesterona/análisis
8.
J Dairy Sci ; 98(8): 5763-73, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26004838

RESUMEN

The aim of this study was to define endocrine fertility traits from in-line milk progesterone (P4) records and to estimate genetic parameters for these traits. Correlations of classical fertility (calving interval and calving to first service) and milk production traits with endocrine fertility traits were also estimated. In-line milk P4 records (n=160,952) collected from June 2009 through November 2013 for 2,273 lactations of 1,561 Holstein-Friesian cows in 12 commercial herds in the Netherlands were analyzed for (the log of) the number of days from calving till commencement of luteal activity (lnC-LA), proportion of samples between 25 and 60 d in milk with luteal activity (PLA), presence or absence of luteal activity for a cow between 25 and 60 d in milk, interval from commencement of luteal activity to first service (CLAFS), first luteal phase length, length of first interluteal interval, and length of first interovulatory interval. Milk P4 records were sampled, on average, every 2 d. Genetic parameters were estimated using a mixed linear animal model. Heritability estimates (±SE) of endocrine fertility traits were 0.12±0.05 for lnC-LA, 0.12±0.05 for PLA, and 0.11±0.06 for CLAFS, and their repeatability estimates were 0.29±0.04, 0.21±0.04, and 0.15±0.06, respectively. The genetic correlation of lnC-LA with PLA was -0.91±0.06 and with CLAFS was -0.56±0.25. The genetic correlations of lnC-LA were 0.26±0.33 with calving interval and 0.37±0.21 with calving to first service. Genetic correlations of the milk production traits with lnC-LA ranged from 0.04 to 0.18 and 0.07 to 0.65 with classical fertility traits. The phenotypic correlations of all endocrine fertility traits with milk production traits were close to zero (0.01 to 0.07). This study shows that in-line P4 records can be used to define and explore several heritable endocrine fertility traits in dairy cows and might help in selection for improved fertility.


Asunto(s)
Bovinos/genética , Bovinos/metabolismo , Fertilidad , Variación Genética , Leche/química , Progesterona/metabolismo , Animales , Industria Lechera , Femenino , Modelos Genéticos , Fenotipo , Reproducción , Procesos Estocásticos
9.
Animal ; 8(11): 1743-53, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25045914

RESUMEN

In livestock, many studies have reported the results of imputation to 50k single nucleotide polymorphism (SNP) genotypes for animals that are genotyped with low-density SNP panels. The objective of this paper is to review different measures of correctness of imputation, and to evaluate their utility depending on the purpose of the imputed genotypes. Across studies, imputation accuracy, computed as the correlation between true and imputed genotypes, and imputation error rates, that counts the number of incorrectly imputed alleles, are commonly used measures of imputation correctness. Based on the nature of both measures and results reported in the literature, imputation accuracy appears to be a more useful measure of the correctness of imputation than imputation error rates, because imputation accuracy does not depend on minor allele frequency (MAF), whereas imputation error rate depends on MAF. Therefore imputation accuracy can be better compared across loci with different MAF. Imputation accuracy depends on the ability of identifying the correct haplotype of a SNP, but many other factors have been identified as well, including the number of genotyped immediate ancestors, the number of animals with genotypes at the high-density panel, the SNP density on the low- and high-density panel, the MAF of the imputed SNP and whether imputed SNP are located at the end of a chromosome or not. Some of these factors directly contribute to the linkage disequilibrium between imputed SNP and SNP on the low-density panel. When imputation accuracy is assessed as a predictor for the accuracy of subsequent genomic prediction, we recommend that: (1) individual-specific imputation accuracies should be used that are computed after centring and scaling both true and imputed genotypes; and (2) imputation of gene dosage is preferred over imputation of the most likely genotype, as this increases accuracy and reduces bias of the imputed genotypes and the subsequent genomic predictions.


Asunto(s)
Genoma , Genómica/métodos , Genotipo , Ganado/genética , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Frecuencia de los Genes , Haplotipos
10.
J Dairy Sci ; 96(1): 592-604, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23127906

RESUMEN

Milk fat composition shows substantial seasonal variation, most of which is probably caused by differences in the feeding of dairy cows. The present study aimed to know whether milk fat composition in winter is genetically the same trait as milk fat composition in summer. For this purpose, we estimated heritabilities, genetic correlations, effects of acyl-coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) K232A, and stearoyl-coenzyme A desaturase 1 (SCD1) A293V polymorphisms for milk fat composition in winter and summer, and tested for genotype by season interactions of DGAT1 K232A and SCD1 A293V polymorphisms. Milk samples were obtained from 2,001 first-lactation Dutch Holstein-Friesian cows, most with records in both winter and summer. Summer milk contained higher amounts of unsaturated fatty acids (FA) and lower amounts of saturated FA compared with winter milk. Heritability estimates were comparable between seasons: moderate to high for short- and medium-chain FA (0.33 to 0.74) and moderate for long-chain FA (0.19 to 0.43) in both seasons. Genetic correlations between winter and summer milk were high, indicating that milk fat composition in winter and in summer can largely be considered as genetically the same trait. Effects of DGAT1 K232A and SCD1 A293V polymorphisms were similar across seasons for most FA. Allele DGAT1 232A in winter as well as in summer milk samples was negatively associated with most FA with less than 18 carbons, saturated FA, saturated FA to unsaturated FA ratio, and C10 to C16 unsaturation indices, and was positively associated with C14:0, unsaturated C18, unsaturated FA, and C18 and conjugated linoleic acid unsaturation indices. Allele SCD1 293V in winter as well as in summer milk samples was negatively associated with C18:0, C10:1 to cis-9 C14:1, trans-11 C18:1, and C10 to C14 unsaturation indices, and positively associated with C8:0 to C14:0, cis-9 C16:1, and C16 to conjugated linoleic acid unsaturation indices. In addition, significant DGAT1 K232A by season interaction was found for some FA and SCD1 A293V by season interaction was only found for trans-11 C18:1. These interactions were due to scaling of genotype effects.


Asunto(s)
Bovinos/genética , Diacilglicerol O-Acetiltransferasa/genética , Grasas/análisis , Lactancia/genética , Leche/química , Estearoil-CoA Desaturasa/genética , Alelos , Animales , Ácidos Grasos/genética , Femenino , Genotipo , Polimorfismo Genético/genética , Polimorfismo Genético/fisiología , Carácter Cuantitativo Heredable , Estaciones del Año
11.
J Dairy Sci ; 93(7): 3310-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20630247

RESUMEN

Studies have reported genetic variation in milk urea nitrogen (MUN) between cows, suggesting genetic differences in nitrogen efficiency between cows. In this paper, the results of a genome-wide scan to identify quantitative trait loci (QTL) that contribute to genetic variation in MUN and MUN yield are presented. Two to 3 morning milk samples were taken from 1,926 cows, resulting in 5,502 test-day records. Test-day records were corrected for systematic environmental effects using a repeatability animal model. Averages of corrected phenotypes of 849 cows, belonging to 7 sire families, were used in an across-family multimarker regression approach to detect QTL. Animals were successfully genotyped for 1,341 single nucleotide polymorphisms. The QTL analysis resulted in 4 chromosomal regions with suggestive QTL: Bos taurus autosomes (BTA) 1, 6, 21, and 23. On BTA 1, 2 suggestive QTL affecting MUN were detected at 60 and 140 cM. On BTA 6, 1 suggestive QTL affecting both MUN and MUN yield was detected at 103 cM. On BTA 21, 1 suggestive QTL affecting MUN yield was detected at 83 cM. On BTA 23, 1 suggestive QTL affecting MUN was detected at 54 cM. Quantitative trait loci for MUN and MUN yield were suggestive and each explained between 2 and 3% of the phenotypic variance.


Asunto(s)
Bovinos/genética , Estudio de Asociación del Genoma Completo , Leche/química , Nitrógeno/análisis , Sitios de Carácter Cuantitativo/genética , Animales , Femenino , Masculino , Países Bajos , Urea/análisis
12.
J Anim Sci ; 88(9): 2883-92, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20495117

RESUMEN

The aim of this study was to investigate whether there is heritable social variation in ADG from birth until weaning in piglets. Nursing and the establishment of teat order are sources of social interaction among suckling piglets nursed by the same sow. If a heritable social effect is present, but ignored, the selected animals might be the most competitive ones with negative effects on growth of their group mates, resulting in less response to selection than expected. The social interaction model was extended with a maternal component to estimate genetic maternal and social effects. Four different animal models were compared: a basic model with a direct heritable effect only; a social model accounting for direct and social heritable effects; a maternal model with a heritable maternal effect in addition to the basic model; and a social-maternal model accounting for direct, social, and maternal heritable effects. Estimates of direct, maternal, and social heritability were 0.07, 0.06, and around 0.0007 (not significantly different from zero, SE = 0.0005), respectively. Total heritable variance, including direct, social, and maternal heritable variance and their covariances ranged from 0.07 to 0.15 of the phenotypic variation. Both maternal models were significantly better than equivalent nonmaternal models (P

Asunto(s)
Porcinos/crecimiento & desarrollo , Porcinos/genética , Aumento de Peso/genética , Animales , Epigénesis Genética , Selección Genética , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...