Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 266: 116077, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38219657

RESUMEN

The serious spread of antibiotic-resistant Staphylococcal aureus strains is alarming. This is reflected by the measures governments and health-related bodies are offering to ease antibiotic drug development. Finding new active agents, preferably with novel mechanism of action, or even finding new targets for drug development are essential. In this review, we summarize the current status of novel antistaphylococcal agents undergoing clinical trials. We mainly discuss antistaphylococcal small molecules and peptides in the text with a special focus on their chemistry, while antistaphylococcal immunotherapy (antibodies) are mentioned in a summative table. This review shall serve as a summary that influences future synthetic efforts in the antistaphyloccocals development field.


Asunto(s)
Antibacterianos , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Péptidos/uso terapéutico
3.
Eur J Med Chem ; 258: 115617, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37423128

RESUMEN

Tuberculosis is the number one killer of infectious diseases caused by a single microbe, namely Mycobacterium tuberculosis (Mtb). The success rate of curing this infection is decreasing due to emerging antimicrobial resistance. Therefore, novel treatments are urgently needed. As an attempt to develop new antituberculars effective against both drugs-sensitive and drug-resistant Mtb, we report the synthesis of a novel series inspired by combining fragments from the first-line agents isoniazid and pyrazinamide (series I) and isoniazid with the second-line agent 4-aminosalicylic acid (series II). We identified compound 10c from series II with selective, potent in vitro antimycobacterial activity against both drug-sensitive and drug-resistant Mtb H37Rv strains with no in vitro or in vivo cytotoxicity. In the murine model of tuberculosis, compound 10c caused a statistically significant decrease in colony-forming units (CFU) in spleen. Despite having a 4-aminosalicylic acid fragment in its structure, biochemical studies showed that compound 10c does not directly affect the folate pathway but rather methionine metabolism. In silico simulations indicated the possibility of binding to mycobacterial methionine-tRNA synthetase. Metabolic study in human liver microsomes revealed that compound 10c does not have any known toxic metabolites and has a half-life of 630 min, overcoming the main drawbacks of isoniazid (toxic metabolites) and 4-aminosalicylic acid (short half-life).


Asunto(s)
Ácido Aminosalicílico , Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Isoniazida/farmacología , Ácido Aminosalicílico/farmacología , Antituberculosos/química , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Metionina , Pruebas de Sensibilidad Microbiana
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108278

RESUMEN

Identifying patients likely to develop breast cancer recurrence remains a challenge. Thus, the discovery of biomarkers capable of diagnosing recurrence is of the utmost importance. MiRNAs are small, non-coding RNA molecules which are known to regulate genetic expression and have previously demonstrated relevance as biomarkers in malignancy. To perform a systematic review evaluating the role of miRNAs in predicting breast cancer recurrence. A formal systematic search of PubMed, Scopus, Web of Science, and Cochrane databases was performed. This search was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) checklist. A total of 19 studies involving 2287 patients were included. These studies identified 44 miRNAs which predicted breast cancer recurrence. Results from nine studies assessed miRNAs in tumour tissues (47.4%), eight studies included circulating miRNAs (42.1%), and two studies assessed both tumour and circulating miRNAs (10.5%). Increased expression of 25 miRNAs were identified in patients who developed recurrence, and decreased expression of 14 miRNAs. Interestingly, five miRNAs (miR-17-5p, miR-93-5p, miR-130a-3p, miR-155, and miR-375) had discordant expression levels, with previous studies indicating both increased and reduced expression levels of these biomarkers predicting recurrence. MiRNA expression patterns have the ability to predict breast cancer recurrence. These findings may be used in future translational research studies to identify patients with breast cancer recurrence to improve oncological and survival outcomes for our prospective patients.


Asunto(s)
Neoplasias de la Mama , MicroARN Circulante , MicroARNs , ARN Pequeño no Traducido , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Estudios Prospectivos , Biomarcadores de Tumor/genética
5.
ACS Infect Dis ; 9(1): 79-96, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36577009

RESUMEN

Apart from the SARS-CoV-2 virus, tuberculosis remains the leading cause of death from a single infectious agent according to the World Health Organization. As part of our long-term research, we prepared a series of hybrid compounds combining pyrazinamide, a first-line antitubercular agent, and 4-aminosalicylic acid (PAS), a second-line agent. Compound 11 was found to be the most potent, with a broad spectrum of antimycobacterial activity and selectivity toward mycobacterial strains over other pathogens. It also retained its in vitro activity against multiple-drug-resistant mycobacterial strains. Several structural modifications were attempted to improve the in vitro antimycobacterial activity. The δ-lactone form of compound 11 (11') had more potent in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Compound 11 was advanced for in vivo studies, where it was proved to be nontoxic in Galleria mellonella and zebrafish models, and it reduced the number of colony-forming units in spleens in the murine model of tuberculosis. Biochemical studies showed that compound 11 targets mycobacterial dihydrofolate reductases (DHFR). An in silico docking study combined with molecular dynamics identified a viable binding mode of compound 11 in mycobacterial DHFR. The lactone 11' opens in human plasma to its parent compound 11 (t1/2 = 21.4 min). Compound 11 was metabolized by human liver fraction by slow hydrolysis of the amidic bond (t1/2 = 187 min) to yield PAS and its starting 6-chloropyrazinoic acid. The long t1/2 of compound 11 overcomes the main drawback of PAS (short t1/2 necessitating frequent administration of high doses of PAS).


Asunto(s)
Ácido Aminosalicílico , COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Pirazinamida/farmacología , Ácido Aminosalicílico/farmacología , Pez Cebra , SARS-CoV-2 , Antituberculosos/química , Tuberculosis/tratamiento farmacológico , Lactonas
6.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34959712

RESUMEN

The utility of clinically available antifungals is limited by their narrow spectrum of activity, high toxicity, and emerging resistance. Antifungal drug discovery has always been a challenging area, since fungi and their human host are eukaryotes, making it difficult to identify unique targets for antifungals. Novel antifungals in clinical development include first-in-class agents, new structures for an established target, and formulation modifications to marketed antifungals, in addition to repurposed agents. Membrane interacting peptides and aromatherapy are gaining increased attention in the field. Immunotherapy is another promising treatment option, with antifungal antibodies advancing into clinical trials. Novel targets for antifungal therapy are also being discovered, allowing the design of new promising agents that may overcome the resistance issue. In this mini review, we will summarize the current status of antifungal drug pipelines in clinical stages, and the most recent advancements in preclinical antifungal drug development, with special focus on their chemistry.

7.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34451864

RESUMEN

Despite the established treatment regimens, tuberculosis remains an alarming threat to public health according to WHO. Novel agents are needed to overcome the increasing rate of resistance and perhaps achieve eradication. As part of our long-term research on pyrazine derived compounds, we prepared a series of their ortho fused derivatives, N-phenyl- and N-benzyl quinoxaline-2-carboxamides, and evaluated their in vitro antimycobacterial activity. In vitro activity against Mycobacterium tuberculosis H37Ra (represented by minimum inhibitory concentration, MIC) ranged between 3.91-500 µg/mL, with most compounds having moderate to good activities (MIC < 15.625 µg/mL). The majority of the active compounds belonged to the N-benzyl group. In addition to antimycobacterial activity assessment, final compounds were screened for their in vitro cytotoxicity. N-(naphthalen-1-ylmethyl)quinoxaline-2-carboxamide (compound 29) was identified as a potential antineoplastic agent with selective cytotoxicity against hepatic (HepG2), ovarian (SK-OV-3), and prostate (PC-3) cancer cells lines. Molecular docking showed that human DNA topoisomerase and vascular endothelial growth factor receptor could be potential targets for 29.

8.
Bioorg Chem ; 110: 104806, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33799176

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are crucial for the correct assembly of amino acids to cognate tRNA to maintain the fidelity of proteosynthesis. AaRSs have become a hot target in antimicrobial research. Three aaRS inhibitors are already in clinical practice; antibacterial mupirocin inhibits the synthetic site of isoleucyl-tRNA synthetase, antifungal tavaborole inhibits the editing site of leucyl-tRNA synthetase, and antiprotozoal halofuginone inhibits proline-tRNA synthetase. According to the World Health Organization, tuberculosis globally remains the leading cause of death from a single infectious agent. The rising incidence of multidrug-resistant tuberculosis is alarming and urges the search for new antimycobacterial compounds, preferably with yet unexploited mechanism of action. In this literature review, we have covered the up-to-date state in the field of inhibitors of mycobacterial aaRSs. The most studied aaRS in mycobacteria is LeuRS with at least four structural types of inhibitors, followed by TyrRS and AspRS. Inhibitors of MetRS, LysRS, and PheRS were addressed in a single significant study each. In many cases, the enzyme inhibition activity translated into micromolar or submicromolar inhibition of growth of mycobacteria. The most promising aaRS inhibitor as an antimycobacterial compound is GSK656 (compound 8), the only aaRS inhibitor in clinical trials (Phase IIa) for systemic use against tuberculosis. GSK656 is orally available and shares the oxaborole tRNA-trapping mechanism of action with antifungal tavaborole.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Aminoacil-ARNt Sintetasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Bacterias/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
9.
Molecules ; 24(7)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925695

RESUMEN

We report the design, synthesis, and in vitro antimicrobial activity of a series of N-substituted 3-aminopyrazine-2-carboxamides with free amino groups in position 3 on the pyrazine ring. Based on various substituents on the carboxamidic moiety, the series is subdivided into benzyl, alkyl, and phenyl derivatives. The three-dimensional structures of the title compounds were predicted using energy minimization and low mode molecular dynamics under AMBER10:EHT forcefield. Compounds were evaluated for antimycobacterial, antibacterial, and antifungal activities in vitro. The most active compound against Mycobacterium tuberculosis H37Rv (Mtb) was 3-amino-N-(2,4-dimethoxyphenyl)pyrazine-2-carboxamide (17, MIC = 12.5 µg/mL, 46 µM). Antimycobacterial activity against Mtb and M. kansasii along with antibacterial activity increased among the alkyl derivatives with increasing the length of carbon side chain. Antibacterial activity was observed for phenyl and alkyl derivatives, but not for benzyl derivatives. Antifungal activity was observed in all structural subtypes, mainly against Trichophyton interdigitale and Candida albicans. The four most active compounds (compounds 10, 16, 17, 20) were evaluated for their in vitro cytotoxicity in HepG2 cancer cell line; only compound 20 was found to exert some level of cytotoxicity. Compounds belonging to the current series were compared to previously published, structurally related compounds in terms of antimicrobial activity to draw structure activity relationships conclusions.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Pirazinas/síntesis química , Pirazinas/farmacología , Antibacterianos/química , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Hongos/efectos de los fármacos , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Pirazinas/química
10.
Molecules ; 25(1)2019 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-31905775

RESUMEN

We prepared a series of substituted N-(pyrazin-2-yl)benzenesulfonamides as an attempt to investigate the effect of different linkers connecting pyrazine to benzene cores on antimicrobial activity when compared to our previous compounds of amide or retro-amide linker type. Only two compounds, 4-amino-N-(pyrazin-2-yl)benzenesulfonamide (MIC = 6.25 µg/mL, 25 µM) and 4-amino-N-(6-chloropyrazin-2-yl)benzenesulfonamide (MIC = 6.25 µg/mL, 22 µM) exerted good antitubercular activity against M. tuberculosis H37Rv. However, they were excluded from the comparison as they-unlike the other compounds-possessed the pharmacophore for the inhibition of folate pathway, which was proven by docking studies. We performed target fishing, where we identified matrix metalloproteinase-8 as a promising target for our title compounds that is worth future exploration.


Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Antiinfecciosos/química , Antituberculosos/síntesis química , Antituberculosos/química , Antituberculosos/farmacología , Fenómenos Químicos , Técnicas de Química Sintética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/química , Bencenosulfonamidas
11.
Crit Rev Microbiol ; 44(6): 779-792, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30663918

RESUMEN

Tuberculosis is still a global health burden. It is caused by Mycobacterium tuberculosis which afflicts around one third of the world's population and costs around 1.3 million people their lives every year. Bacillus Calmette-Guerin vaccine is inefficient to prevent overt infection. Additionally, the lengthy inconvenient course of treatment, along with the raising issue of antimicrobial resistance, result in incomplete eradication of this infectious disease. The lack of proper animal models that replicate the latent and active courses of human tuberculosis infection remains one of the main reasons behind the poor advancement in tuberculosis research. Danio rerio, commonly known as zebrafish, is catching more attention as an animal model in tuberculosis research field. This shift is based on the histological and pathological similarities between Mycobacterium marinum infection in zebrafish and Mycobacterium tuberculosis infection in humans. Being small, cheap, transparent, and easy to handle have added further advantages to the use of zebrafish model. Besides better understanding of the pathogenesis of tuberculosis, Mycobacterium marinum infected zebrafish model is useful for evaluating novel vaccines against human tuberculosis, high throughput small molecule screening, repurposing established drugs with possible antitubercular activity, and assessing novel antituberculars for hepatotoxicity.


Asunto(s)
Modelos Animales de Enfermedad , Tuberculosis/microbiología , Pez Cebra , Animales , Antituberculosos/farmacología , Humanos , Mycobacterium marinum/efectos de los fármacos , Mycobacterium marinum/fisiología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/fisiología , Tuberculosis/tratamiento farmacológico , Pez Cebra/microbiología
12.
Molecules ; 22(10)2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065539

RESUMEN

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) has become a frequently deadly infection due to increasing antimicrobial resistance. This serious issue has driven efforts worldwide to discover new drugs effective against Mtb. One research area is the synthesis and evaluation of pyrazinamide derivatives as potential anti-TB drugs. In this paper we report the synthesis and biological evaluations of a series of ureidopyrazines. Compounds were synthesized by reacting alkyl/aryl isocyanates with aminopyrazine or with propyl 5-aminopyrazine-2-carboxylate. Reactions were performed in pressurized vials using a CEM Discover microwave reactor with a focused field. Purity and chemical structures of products were assessed, and the final compounds were tested in vitro for their antimycobacterial, antibacterial, and antifungal activities. Propyl 5-(3-phenylureido)pyrazine-2-carboxylate (compound 4, MICMtb = 1.56 µg/mL, 5.19 µM) and propyl 5-(3-(4-methoxyphenyl)ureido)pyrazine-2-carboxylate (compound 6, MICMtb = 6.25 µg/mL, 18.91 µM) had high antimycobacterial activity against Mtb H37Rv with no in vitro cytotoxicity on HepG2 cell line. Therefore 4 and 6 are suitable for further structural modifications that might improve their biological activity and physicochemical properties. Based on the structural similarity to 1-(2-chloropyridin-4-yl)-3-phenylurea, a known plant growth regulator, two selected compounds were evaluated for similar activity as abiotic elicitors.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Proliferación Celular/efectos de los fármacos , Fagopyrum/química , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Reguladores del Crecimiento de las Plantas/síntesis química , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Pirazinamida/química , Pirazinamida/farmacología , Pirazinas/síntesis química , Pirazinas/química , Estrés Fisiológico/efectos de los fármacos
13.
Molecules ; 22(9)2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28880230

RESUMEN

Pyrazinamide, the first-line antitubercular drug, has been regarded the basic component of tuberculosis treatment for over sixty years. Researchers have investigated its effect on Mycobacterium tuberculosis for this long time, and as a result, new potential targets of pyrazinamide or its active form, pyrazinoic acid, have been found. We have designed and prepared 3-(phenyl-carbamoyl)pyrazine-2-carboxylic acids as more lipophilic derivatives of pyrazinoic acid. We also prepared methyl and propyl derivatives as prodrugs with further increased lipophilicity. Antimycobacterial, antibacterial and antifungal growth inhibiting activity was investigated in all prepared compounds. 3-[(4-Nitrophenyl)carbamoyl]pyrazine-2-carboxylic acid (16) exerted high antimycobacterial activity against Mycobacterium tuberculosis H37Rv with MIC = 1.56 µg·mL-1 (5 µM). Propyl 3-{[4-(trifluoromethyl)phenyl]carbamoyl}pyrazine-2-carboxylate (18a) showed also high antimycobacterial activity against Mycobacterium tuberculosis H37Rv with MIC = 3.13 µg·mL-1. In vitro cytotoxicity of the active compounds was investigated and no significant cytotoxic effect was observed. Based to structural similarity to known inhibitors of decaprenylphosphoryl-ß-d-ribose oxidase, DprE1, we performed molecular docking of the prepared acids to DprE1. These in silico experiments indicate that modification of the linker connecting aromatic parts of molecule does not have any negative influence on the binding.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/química , Pirazinas/farmacología , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/química , Antifúngicos/química , Antifúngicos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Simulación por Computador , Diseño de Fármacos , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Simulación del Acoplamiento Molecular/métodos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...