Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36831485

RESUMEN

Tumor-associated hypoxia, i.e., decreased availability of oxygen, results in a poor clinical outcome since it promotes EMT, metastasis, and chemotherapy-resistance. We have previously identified p53 and its target miR-34a, as critical determinants of the effect of hypoxia on colorectal cancer (CRC). Here, we aimed to characterize mechanisms that contribute to the selective advantage of cells with loss of p53/miR-34a function in a hypoxic environment. Using in silico prediction, we identified XBP-1 and IRE1A as potential miR-34a targets. IRE1A and XBP-1 are central components of the unfolded protein response that is activated by ER stress, which is also induced in tumor cells as a response to harsh conditions surrounding tumors such as hypoxia and a limited supply of nutrients. Here we characterized the XBP-1(S) transcription factor and its regulator IRE1A as direct, conserved miR-34a targets in CRC cells. After hypoxia and DNA damage, IRE1A and XBP-1 were repressed by p53 in a miR-34a-dependent manner, whereas p53-deficient cells showed induction of IRE1A and XBP-1(S). Furthermore, miR-34a expression was directly suppressed by XBP-1(S). In p53-deficient CRC cells, hypoxia-induced EMT, migration, invasion, metastases formation, and resistance to 5-FU were dependent on IRE1A/XBP-1(S) activation. Hypoxia-induced autophagy was identified as an XBP-1(S)-dependent mediator of 5-FU resistance and was reversed by ectopic miR-34a expression. The HIF1A/IRE1A/XBP-1(S)/p53/miR-34a feedback loop described here represents a central regulator of the response to hypoxia and ER stress that maintains cellular homeostasis. In tumors, the inactivation of p53 and miR-34a may result in IRE1A/XPB-1(S)-mediated EMT and autophagy, which ultimately promotes metastasis and chemoresistance.

2.
J Immunol ; 209(11): 2227-2238, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36426975

RESUMEN

Colorectal cancer is one of the most common cancers and a major cause of mortality. Proinflammatory and antitumor immune responses play critical roles in colitis-associated colon cancer. CCL17, a chemokine of the C-C family and ligand for CCR4, is expressed by intestinal dendritic cells in the steady state and is upregulated during colitis in mouse models and inflammatory bowel disease patients. In this study, we investigated the expression pattern and functional relevance of CCL17 for colitis-associated colon tumor development using CCL17-enhanced GFP-knockin mice. CCL17 was highly expressed by dendritic cells but also upregulated in macrophages and intermediary monocytes in colon tumors induced by exposure to azoxymethane and dextran sodium sulfate. Despite a similar degree of inflammation in the colon, CCL17-deficient mice developed fewer tumors than did CCL17-competent mice. This protective effect was abrogated by cohousing, indicating a dependency on the microbiota. Changes in microbiota diversity and composition were detected in separately housed CCL17-deficient mice, and these mice were more susceptible to azoxymethane-induced early apoptosis in the colon affecting tumor initiation. Immune cell infiltration in colitis-induced colon tumors was not affected by the lack of CCL17. Taken together, our results indicate that CCL17 promotes colitis-associated tumorigenesis by influencing the composition of the intestinal microbiome and reducing apoptosis during tumor initiation.


Asunto(s)
Colitis , Neoplasias del Colon , Microbioma Gastrointestinal , Ratones , Animales , Carcinogénesis , Transformación Celular Neoplásica , Azoximetano/toxicidad , Neoplasias del Colon/patología , Quimiocina CCL17
3.
Int J Biol Sci ; 18(14): 5415-5437, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147476

RESUMEN

The CSF1 receptor (CSF1R) encoding mRNA represents a direct target of miR-34a. However, the in vivo relevance of the suppression of CSF1R by miR-34a for intestinal tumor suppression mediated by the p53/miR-34a pathway has remained unknown. Here, Apc Min/+ mice with intestinal-epithelial cell (IEC)-specific deletions of Mir34a showed increased formation of adenomas and decreased survival, whereas deletion of Csf1r decreased adenoma formation and increased survival. In adenomas deletion of Mir34a enhanced proliferation, STAT3 signaling, infiltration with fibroblasts, immune cells and microbes, and tumor stem cell abundance and decreased apoptosis. Deletion of Csf1r had the opposite effects. In addition, homeostasis of intestinal secretory and stem cells, and tumoroid formation were affected in opposite directions by deletion of Mir34a and CSF1R. Concomitant deletion of Csf1r and Mir34a neutralized the effects of the single deletions. mRNAs containing Mir34a seed-matching sites, which encode proteins related to EMT (epithelial-mesenchymal transition), stemness and Wnt signaling, were enriched after Mir34a inactivation in adenomas and derived tumoroids. Netrin-1/Ntn1 and Transgelin/Tagln were characterized as direct targets of Mir34a and Csf1r signaling. Mir34a-inactivation related expression signatures were associated with CMS4/CRISB+D, stage 4 CRCs and poor patient survival. In tumoroids the loss of Mir34a conferred resistance to 5-FU which was mediated by Csf1r. This study provides genetic evidence for a requirement of Mir34a-mediated Csf1r suppression for intestinal stem/secretory cell homeostasis and tumor suppression, and suggests that therapeutic targeting of CSF1R may be effective for the treatment of CRCs with defects in the p53/miR-34a pathway.


Asunto(s)
Adenoma , MicroARNs , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Adenoma/genética , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Fluorouracilo , Regulación Neoplásica de la Expresión Génica/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Netrina-1/genética , Netrina-1/metabolismo , ARN Mensajero , Proteínas Tirosina Quinasas Receptoras/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
4.
Nat Commun ; 12(1): 1003, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579932

RESUMEN

Genotoxic colibactin-producing pks+ Escherichia coli induce DNA double-strand breaks, mutations, and promote tumor development in mouse models of colorectal cancer (CRC). Colibactin's distinct mutational signature is reflected in human CRC, suggesting a causal link. Here, we investigate its transformation potential using organoids from primary murine colon epithelial cells. Organoids recovered from short-term infection with pks+ E. coli show characteristics of CRC cells, e.g., enhanced proliferation, Wnt-independence, and impaired differentiation. Sequence analysis of Wnt-independent organoids reveals an enhanced mutational burden, including chromosomal aberrations typical of genomic instability. Although we do not find classic Wnt-signaling mutations, we identify several mutations in genes related to p53-signaling, including miR-34a. Knockout of Trp53 or miR-34 in organoids results in Wnt-independence, corroborating a functional interplay between the p53 and Wnt pathways. We propose larger chromosomal alterations and aneuploidy as the basis of transformation in these organoids, consistent with the early appearance of chromosomal instability in CRC.


Asunto(s)
Células Epiteliales/metabolismo , Escherichia coli/metabolismo , Genómica , Péptidos/metabolismo , Policétidos/metabolismo , Animales , Aberraciones Cromosómicas , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/psicología , Daño del ADN , Células Epiteliales/patología , Escherichia coli/genética , Masculino , Ratones , Ratones Noqueados , Mutación , Organoides , Péptidos/genética
5.
Cell Mol Gastroenterol Hepatol ; 7(4): 783-802, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30831320

RESUMEN

BACKGROUND & AIMS: Intratumor heterogeneity is a common feature of colorectal cancer (CRC). Here, we analyzed whether mesenchymal-like CRC cells promote the progression of epithelial-like CRC cells via paracrine mechanisms. METHODS: Six CRC cell lines that show an epithelial phenotype were treated with conditioned media (CM) from CRC cell lines that show a mesenchymal phenotype, and effects on epithelial-mesenchymal transition (EMT), migration, invasion, and chemoresistance were determined. Secreted factors potentially mediating these effects were identified by using cytokine arrays. Associations of these factors with tumor progression and patient survival were determined. RESULTS: CM obtained from mesenchymal-like CRC cells induced EMT associated with increased migration, invasion, and chemoresistance in epithelial-like CRC cell lines. Notably, activation of p53 in mesenchymal-like CRC cells prevented these effects of CM. Increased concentrations of several cytokines were identified in CM from mesenchymal-like CRC cell lines and a subset of these cytokines showed repression by p53. The down-regulation of nidogen-1 (NID1) was particularly significant and was owing to p53-mediated induction of microRNA-192 and microRNA-215, which directly target the NID1 messenger RNA. NID1 was found to be required and sufficient for inducing EMT, invasion, and migration in epithelial-like CRC cells. In primary CRCs, increased NID1 expression was associated with p53 mutation and microRNA-192/215 down-regulation. Importantly, increased NID1 expression in CRCs correlated with enhanced tumor progression and poor patient survival. CONCLUSIONS: Taken together, our results show that CRC cells promote tumor progression via secreting NID1, which induces EMT in neighboring tumor cells. Importantly, the interference of p53 with this paracrine signaling between tumor cells may critically contribute to tumor suppression.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal , Glicoproteínas de Membrana/metabolismo , MicroARNs/metabolismo , Comunicación Paracrina , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Medios de Cultivo Condicionados/farmacología , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/genética , Invasividad Neoplásica , Comunicación Paracrina/efectos de los fármacos , Comunicación Paracrina/genética , Pronóstico
6.
Gastroenterology ; 155(6): 1868-1882, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30099074

RESUMEN

BACKGROUND & AIMS: Combined inactivation of the microRNA 34a gene (MIR34A, by methylation) and the TP53 gene (by mutation or deletion) is observed in 50% of colorectal tumors that progress to distant metastases. We studied mice with intestinal disruption of Mir34a and Tp53 to investigate mechanisms of colorectal carcinogenesis and identify strategies to block these processes. METHODS: Mice with disruption of Mir34a and/or Tp53 specifically in intestinal epithelial cells (IECs) (Mir34aΔIEC mice, Tp53ΔIEC mice, and Mir34aΔIEC/Tp53ΔIEC mice) and controls (Mir34aFl/Fl/Tp53Fl/Fl) were given azoxymethane to induce colorectal carcinogenesis. Some mice were given intraperitoneal injections of an antibody against mouse interleukin 6 receptor (IL6R), or received an inhibitor of PAI1 (tiplaxtinin) in their chow. Intestinal tissues were collected and analyzed by immunohistochemistry; gene expression profiles were analyzed by RNA sequencing. We determined the expression and localization of PAI1 in 61 human primary colon cancers and compared them to MIR34A methylation and inactivating mutations in TP53. Data on mRNA levels, methylation, and clinical features of 628 colon and rectal adenocarcinomas were obtained from The Cancer Genome Atlas portal. RESULTS: Mir34aΔIEC/Tp53ΔIEC mice developed larger and more colorectal tumors, with increased invasion of surrounding tissue and metastasis to lymph nodes, than control mice or mice with disruption of either gene alone. Cells in tumors from the Mir34aΔIEC/Tp53ΔIEC mice had decreased apoptosis and increased proliferation compared to tumor cells from control mice, and expressed higher levels of genes, that regulate inflammation (including Il6r and Stat3) and epithelial-mesenchymal transition. The gene expression pattern of the tumors from Mir34aΔIEC/Tp53ΔIEC mice was similar to that of human colorectal tumor consensus molecular subtype 4 (mesenchymal, invasive). We identified the Pai1 messenger RNA as a target of Mir34a; levels of PAI1 protein were increased in primary colon cancer samples, that displayed methylation of MIR34A and mutational inactivation of TP53. Administration of tiplaxtinin or anti-IL6R antibody to Mir34aΔIEC/Tp53ΔIEC mice decreased proliferation of cancer cells, and reduced colorectal tumor invasion and metastasis. CONCLUSIONS: In mice, we demonstrated that combined inactivation of Mir34a and Tp53 promotes azoxymethane-induced colorectal carcinogenesis and tumor progression and metastasis by increasing levels of IL6R and PAI1. Strategies to inhibit these processes might be developed to slow progression of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/genética , Silenciador del Gen , Genes p53 , MicroARNs/genética , Receptores de Interleucina-6/metabolismo , Serpina E2/metabolismo , Animales , Azoximetano , Carcinógenos , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Células Epiteliales/fisiología , Mucosa Intestinal/citología , Ratones
7.
BMC Cancer ; 18(1): 102, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29378531

RESUMEN

BACKGROUND: Over time, the chance of cure after the diagnosis of breast cancer has been increasing, as a consequence of earlier diagnosis, improved diagnostic procedures and more effective treatment options. However, oncologists are concerned by the risk of long term treatment side effects, including congestive heart failure (CHF). METHODS: In this study, we evaluated innovative circulating cardiac biomarkers during and after anthracycline-based neoadjuvant chemotherapy (NAC) in breast cancer patients. Levels of cardiac-specific troponins T (cTnT), N-terminal natriuretic peptides (NT-proBNP), soluble ST2 (sST2) and 10 circulating microRNAs (miRNAs) were measured. RESULTS: Under chemotherapy, we observed an elevation of cTnT and NT-proBNP levels, but also the upregulation of sST2 and of 4 CHF-related miRNAs (miR-126-3p, miR-199a-3p, miR-423-5p, miR-34a-5p). The elevations of cTnT, NT-proBNP, sST2 and CHF-related miRNAs were poorly correlated, suggesting that these molecules could provide different information. CONCLUSIONS: Circulating miRNA and sST2 are potential biomarkers of the chemotherapy-related cardiac dysfunction (CRCD). Nevertheless, further studies and long-term follow-up are needed in order to evaluate if these new markers may help to predict CRCD and to identify the patients at risk to later develop CHF.


Asunto(s)
Antraciclinas/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Insuficiencia Cardíaca/sangre , Proteína 1 Similar al Receptor de Interleucina-1/sangre , Adulto , Anciano , Antraciclinas/administración & dosificación , Biomarcadores Farmacológicos/sangre , Biomarcadores de Tumor/sangre , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Femenino , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/patología , Humanos , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Péptido Natriurético Encefálico/sangre , Células Neoplásicas Circulantes/metabolismo , Fragmentos de Péptidos/sangre , Troponina T/sangre
8.
Int J Mol Sci ; 17(7)2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27420053

RESUMEN

miRNAs are a class of over 5000 noncoding RNAs that regulate more than half of the protein-encoding genes by provoking their degradation or preventing their translation. miRNAs are key regulators of complex biological processes underlying several cardiovascular disorders, including left ventricular hypertrophy, ischemic heart disease, heart failure, hypertension and arrhythmias. Moreover, circulating miRNAs herald promise as biomarkers in acute myocardial infarction and heart failure. In this context, this review gives an overview of studies that suggest that miRNAs could also play a role in valvular heart diseases. This area of research is still at its infancy, and further investigations in large patient cohorts and cellular or animal models are needed to provide strong data. Most studies focused on aortic stenosis, one of the most common valvular diseases in developed countries. Profiling and functional analyses indicate that miRNAs could contribute to activation of aortic valve interstitial cells to a myofibroblast phenotype, leading to valvular fibrosis and calcification, and to pressure overload-induced myocardial remodeling and hypertrophy. Data also indicate that specific miRNA signatures, in combination with clinical and functional imaging parameters, could represent useful biomarkers of disease progression or recovery after aortic valve replacement.


Asunto(s)
Biomarcadores/análisis , Enfermedades de las Válvulas Cardíacas/fisiopatología , MicroARNs/genética , Remodelación Ventricular/genética , Animales , Humanos
9.
PLoS One ; 10(9): e0138940, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26390433

RESUMEN

B-type natriuretic peptide (BNP) is often used as a complementary finding in the diagnostic work-up of patients with aortic stenosis (AS). Whether soluble ST2, a new biomarker of cardiac stretch, is associated with symptomatic status and outcome in asymptomatic AS is unknown. sST2 and BNP levels were measured in 86 patients (74±13 years; 59 asymptomatic, 69%) with AS (<1.5 cm2) and preserved left ventricular ejection fraction who were followed-up for 26±16 months. Both BNP and sST2 were associated with NYHA class but sST2 (>23 ng/mL, AUC = 0.68, p<0.01) was more accurate to identify asymptomatic patients or those who developed symptoms during follow-up. sST2 was independently related to left atrial index (p<0.0001) and aortic valve area (p = 0.004; model R2 = 0.32). A modest correlation was found with BNP (r = 0.4, p<0.01). During follow-up, 29 asymptomatic patients (34%) developed heart failure symptoms. With multivariable analysis, peak aortic jet velocity (HR = 2.7, p = 0.007) and sST2 level (HR = 1.04, p = 0.03) were independent predictors of cardiovascular events. In AS, sST2 levels could provide complementary information regarding symptomatic status, new onset heart failure symptoms and outcome. It might become a promising biomarker in these patients.


Asunto(s)
Estenosis de la Válvula Aórtica/fisiopatología , Insuficiencia Cardíaca/sangre , Receptores de Superficie Celular/sangre , Anciano , Anciano de 80 o más Años , Femenino , Insuficiencia Cardíaca/fisiopatología , Humanos , Proteína 1 Similar al Receptor de Interleucina-1 , Masculino , Persona de Mediana Edad
10.
Am J Physiol Gastrointest Liver Physiol ; 306(3): G229-43, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24464560

RESUMEN

Inflammation can contribute to tumor formation; however, markers that predict progression are still lacking. In the present study, the well-established azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mouse model of colitis-associated cancer was used to analyze microRNA (miRNA) modulation accompanying inflammation-induced tumor development and to determine whether inflammation-triggered miRNA alterations affect the expression of genes or pathways involved in cancer. A miRNA microarray experiment was performed to establish miRNA expression profiles in mouse colon at early and late time points during inflammation and/or tumor growth. Chronic inflammation and carcinogenesis were associated with distinct changes in miRNA expression. Nevertheless, prediction algorithms of miRNA-mRNA interactions and computational analyses based on ranked miRNA lists consistently identified putative target genes that play essential roles in tumor growth or that belong to key carcinogenesis-related signaling pathways. We identified PI3K/Akt and the insulin growth factor-1 (IGF-1) as major pathways being affected in the AOM/DSS model. DSS-induced chronic inflammation downregulates miR-133a and miR-143/145, which is reportedly associated with human colorectal cancer and PI3K/Akt activation. Accordingly, conditioned medium from inflammatory cells decreases the expression of these miRNA in colorectal adenocarcinoma Caco-2 cells. Overexpression of miR-223, one of the main miRNA showing strong upregulation during AOM/DSS tumor growth, inhibited Akt phosphorylation and IGF-1R expression in these cells. Cell sorting from mouse colons delineated distinct miRNA expression patterns in epithelial and myeloid cells during the periods preceding and spanning tumor growth. Hence, cell-type-specific miRNA dysregulation and subsequent PI3K/Akt activation may be involved in the transition from intestinal inflammation to cancer.


Asunto(s)
Carcinogénesis/metabolismo , Colitis/metabolismo , Neoplasias del Colon/metabolismo , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Azoximetano/efectos adversos , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
11.
FASEB J ; 27(2): 645-55, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23118025

RESUMEN

Interaction between the gut microbiota and the host starts immediately after birth with the progressive colonization of the sterile intestine. Our aim was to investigate the interactions taking place in the colonic epithelium after the first exposure to gut microbiota. Germ-free (GF) rats were inoculated with two different microbiotas: the first, obtained from suckling rats, was rich in primocolonizing bacteria and the second, obtained from adult rats, was representative of a mature microbiota. Once transferred into GF rats, these two microbiotas evolved such that they converged, and recapitulated the primocolonization pattern, mimicking the chronological scheme of implantation following birth. The two microbiotas induced common responses in the colonic epithelium: a transitory proliferative phase followed by a compensatory phase characterized by increases in the abundance of p21(Cip1) and p27(Kip1) and in the number of goblet cells. The effects of the two microbiotas diverged only through their effects on colonic transporters. Analyses of solute carriers and aquaporins revealed that functional maturation was more pronounced following exposure to adult microbiota than suckling microbiota. The colon matured in parallel with the evolution of the microbiota composition, and we therefore suggest a link between intestinal events regulating homeostasis of the colon and modulation of microbial composition.


Asunto(s)
Colon/crecimiento & desarrollo , Colon/microbiología , Metagenoma , Animales , Diferenciación Celular , Proliferación Celular , Colon/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Genes Bacterianos , Vida Libre de Gérmenes , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Metagenoma/genética , Ratas , Ratas Endogámicas F344 , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...