Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6439, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307480

RESUMEN

Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitor, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, blocks respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We use a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptide to the respiratory tract and demonstrate the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevents MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional means to fight against respiratory infection in non-vaccinated people, that can be readily translated to human trials. It presents a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure.


Asunto(s)
COVID-19 , Sarampión , Animales , Humanos , Virus del Sarampión , SARS-CoV-2 , COVID-19/prevención & control , Sarampión/prevención & control , Proteínas Virales de Fusión/metabolismo , Péptidos/farmacología , Macaca fascicularis/metabolismo
2.
Res Sq ; 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35677066

RESUMEN

Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitors, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, block respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We used a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptides to the respiratory tract and demonstrated the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevented MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional shield which complements vaccination to fight against respiratory infection, presenting a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure, that can be readily translated to human trials.

3.
ACS Nano ; 15(8): 12794-12803, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34291895

RESUMEN

Measles virus (MeV) infection remains a significant public health threat despite ongoing global efforts to increase vaccine coverage. As eradication of MeV stalls, and vulnerable populations expand, effective antivirals against MeV are in high demand. Here, we describe the development of an antiviral peptide that targets the MeV fusion (F) protein. This antiviral peptide construct is composed of a carbobenzoxy-d-Phe-l-Phe-Gly (fusion inhibitor peptide; FIP) conjugated to a lipidated MeV F C-terminal heptad repeat (HRC) domain derivative. Initial in vitro testing showed high antiviral potency and specific targeting of MeV F-associated cell plasma membranes, with minimal cytotoxicity. The FIP and HRC-derived peptide conjugates showed synergistic antiviral activities when administered individually. However, their chemical conjugation resulted in markedly increased antiviral potency. In vitro mechanistic experiments revealed that the FIP-HRC lipid conjugate exerted its antiviral activity predominantly through stabilization of the prefusion F, while HRC-derived peptides alone act predominantly on the F protein after its activation. Coupled with in vivo experiments showing effective prevention of MeV infection in cotton rats, FIP-HRC lipid conjugates show promise as potential MeV antivirals via specific targeting and stabilization of the prefusion MeV F structure.


Asunto(s)
Virus del Sarampión , Sarampión , Humanos , Proteínas Virales de Fusión , Antivirales/farmacología , Antivirales/química , Péptidos/farmacología , Péptidos/química , Lípidos/farmacología
4.
mSphere ; 6(4): e0057121, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34319126

RESUMEN

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is ongoing and has shown the community that flexible methods for rapidly identifying and screening candidate antivirals are needed. Assessing virus-neutralizing activity of human serum to monitor population immunity and response to infection and vaccination is key to pandemic control. We developed a virus neutralization platform strategy that relies only on bioinformatic and genetic information of the virus of interest. The platform uses viral envelope glycoprotein cDNAs to set up an assay that mimics multicycle infection but is safe and, therefore, amenable to biosafety level 2 (BSL2) conditions for viruses that require BSL3 facilities (e.g., SARS-CoV-1 and SARS-CoV-2). As a complement to this platform, we present a new cell-based immunofluorescent (CBI) assay that uses SARS-CoV-2 spike protein (S)-expressing cells to accurately measure the neutralization potential of human sera and is readily adaptable to variants of concern. These methods should be useful additions to the tools for assessing antiviral immunity, whether acquired via natural infection or vaccines. IMPORTANCE Assays for rapid biosafety level 2 (BSL2) evaluation of neutralizing properties of antibodies acquired via natural infection or through vaccination is urgently needed. Here, we propose a combinatorial approach in which sera are screened for SARS-CoV-2 spike protein (S) binding using a cell-based immunofluorescent (CBI) assay, and positive samples are further evaluated in a pseudotyped viral multicycle infection-mimicking protocol under BSL2 conditions.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Pruebas de Neutralización/métodos , Pandemias/prevención & control , Células Vero
5.
mBio ; 12(3): e0079921, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34061592

RESUMEN

Measles virus (MeV) bearing a single amino acid change in the fusion protein (F)-L454W-was isolated from two patients who died of MeV central nervous system (CNS) infection. This mutation in F confers an advantage over wild-type virus in the CNS, contributing to disease in these patients. Using murine ex vivo organotypic brain cultures and human induced pluripotent stem cell-derived brain organoids, we show that CNS adaptive mutations in F enhance the spread of virus ex vivo. The spread of virus in human brain organoids is blocked by an inhibitory peptide that targets F, confirming that dissemination in the brain tissue is attributable to F. A single mutation in MeV F thus alters the fusion complex to render MeV more neuropathogenic. IMPORTANCE Measles virus (MeV) infection can cause serious complications in immunocompromised individuals, including measles inclusion body encephalitis (MIBE). In some cases, MeV persistence and subacute sclerosing panencephalitis (SSPE), another severe central nervous system (CNS) complication, develop even in the face of a systemic immune response. Both MIBE and SSPE are relatively rare but lethal. It is unclear how MeV causes CNS infection. We introduced specific mutations that are found in MIBE or SSPE cases into the MeV fusion protein to test the hypothesis that dysregulation of the viral fusion complex-comprising F and the receptor binding protein, H-allows virus to spread in the CNS. Using metagenomic, structural, and biochemical approaches, we demonstrate that altered fusion properties of the MeV H-F fusion complex permit MeV to spread in brain tissue.


Asunto(s)
Encéfalo/virología , Virus del Sarampión/genética , Proteínas Virales de Fusión/genética , Sustitución de Aminoácidos , Animales , Encéfalo/citología , Encéfalo/patología , Enfermedades del Sistema Nervioso Central/virología , Chlorocebus aethiops , Femenino , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/virología , Masculino , Sarampión/virología , Virus del Sarampión/patogenicidad , Metagenómica , Ratones , Neuronas/virología , Organoides/citología , Organoides/virología , Células Vero , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/clasificación , Proteínas Virales de Fusión/metabolismo
7.
J Am Chem Soc ; 143(15): 5958-5966, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33825470

RESUMEN

The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with ß-amino acid residues to generate α/ß-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/ß-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.


Asunto(s)
Lipopéptidos/farmacología , Virus de la Parainfluenza 3 Humana/efectos de los fármacos , Infecciones del Sistema Respiratorio/patología , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Línea Celular , Colesterol/química , Diseño de Fármacos , Humanos , Lipopéptidos/química , Lipopéptidos/metabolismo , Virus de la Parainfluenza 3 Humana/aislamiento & purificación , Multimerización de Proteína , Ratas , Infecciones del Sistema Respiratorio/virología , Distribución Tisular , Temperatura de Transición , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Internalización del Virus/efectos de los fármacos
8.
Science ; 371(6536): 1379-1382, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33597220

RESUMEN

Containment of the COVID-19 pandemic requires reducing viral transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is initiated by membrane fusion between the viral and host cell membranes, which is mediated by the viral spike protein. We have designed lipopeptide fusion inhibitors that block this critical first step of infection and, on the basis of in vitro efficacy and in vivo biodistribution, selected a dimeric form for evaluation in an animal model. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour cohousing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and thus may readily translate into safe and effective intranasal prophylaxis to reduce transmission of SARS-CoV-2.


Asunto(s)
COVID-19/transmisión , Lipopéptidos/administración & dosificación , Fusión de Membrana/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Inhibidores de Proteínas Virales de Fusión/administración & dosificación , Internalización del Virus/efectos de los fármacos , Administración Intranasal , Animales , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Diseño de Fármacos , Hurones , Lipopéptidos/química , Lipopéptidos/farmacocinética , Lipopéptidos/farmacología , Ratones , Profilaxis Pre-Exposición , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Distribución Tisular , Células Vero , Inhibidores de Proteínas Virales de Fusión/química , Inhibidores de Proteínas Virales de Fusión/farmacocinética , Inhibidores de Proteínas Virales de Fusión/farmacología
9.
Nat Immunol ; 22(1): 25-31, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33154590

RESUMEN

Clinical manifestations of COVID-19 caused by the new coronavirus SARS-CoV-2 are associated with age1,2. Adults develop respiratory symptoms, which can progress to acute respiratory distress syndrome (ARDS) in the most severe form, while children are largely spared from respiratory illness but can develop a life-threatening multisystem inflammatory syndrome (MIS-C)3-5. Here, we show distinct antibody responses in children and adults after SARS-CoV-2 infection. Adult COVID-19 cohorts had anti-spike (S) IgG, IgM and IgA antibodies, as well as anti-nucleocapsid (N) IgG antibody, while children with and without MIS-C had reduced breadth of anti-SARS-CoV-2-specific antibodies, predominantly generating IgG antibodies specific for the S protein but not the N protein. Moreover, children with and without MIS-C had reduced neutralizing activity as compared to both adult COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children independent of whether they develop MIS-C, with implications for developing age-targeted strategies for testing and protecting the population.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , COVID-19/inmunología , Proteínas de la Nucleocápside/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Adulto , Anciano , COVID-19/virología , Niño , Preescolar , Femenino , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/fisiología , Adulto Joven
10.
bioRxiv ; 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33173865

RESUMEN

Containment of the COVID-19 pandemic requires reducing viral transmission. SARS-CoV-2 infection is initiated by membrane fusion between the viral and host cell membranes, mediated by the viral spike protein. We have designed a dimeric lipopeptide fusion inhibitor that blocks this critical first step of infection for emerging coronaviruses and document that it completely prevents SARS-CoV-2 infection in ferrets. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour co-housing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and non-toxic and thus readily translate into a safe and effective intranasal prophylactic approach to reduce transmission of SARS-CoV-2. ONE-SENTENCE SUMMARY: A dimeric form of a SARS-CoV-2-derived lipopeptide is a potent inhibitor of fusion and infection in vitro and transmission in vivo .

11.
mBio ; 11(5)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082259

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the etiological agent of the 2019 coronavirus disease (COVID-19), has erupted into a global pandemic that has led to tens of millions of infections and hundreds of thousands of deaths worldwide. The development of therapeutics to treat infection or as prophylactics to halt viral transmission and spread is urgently needed. SARS-CoV-2 relies on structural rearrangements within a spike (S) glycoprotein to mediate fusion of the viral and host cell membranes. Here, we describe the development of a lipopeptide that is derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibits infection by SARS-CoV-2. The lipopeptide inhibits cell-cell fusion mediated by SARS-CoV-2 S and blocks infection by live SARS-CoV-2 in Vero E6 cell monolayers more effectively than previously described lipopeptides. The SARS-CoV-2 lipopeptide exhibits broad-spectrum activity by inhibiting cell-cell fusion mediated by SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) and blocking infection by live MERS-CoV in cell monolayers. We also show that the SARS-CoV-2 HRC-derived lipopeptide potently blocks the spread of SARS-CoV-2 in human airway epithelial (HAE) cultures, an ex vivo model designed to mimic respiratory viral propagation in humans. While viral spread of SARS-CoV-2 infection was widespread in untreated airways, those treated with SARS-CoV-2 HRC lipopeptide showed no detectable evidence of viral spread. These data provide a framework for the development of peptide therapeutics for the treatment of or prophylaxis against SARS-CoV-2 as well as other coronaviruses.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, continues to spread globally, placing strain on health care systems and resulting in rapidly increasing numbers of cases and mortalities. Despite the growing need for medical intervention, no FDA-approved vaccines are yet available, and treatment has been limited to supportive therapy for the alleviation of symptoms. Entry inhibitors could fill the important role of preventing initial infection and preventing spread. Here, we describe the design, synthesis, and evaluation of a lipopeptide that is derived from the HRC domain of the SARS-CoV-2 S glycoprotein that potently inhibits fusion mediated by SARS-CoV-2 S glycoprotein and blocks infection by live SARS-CoV-2 in both cell monolayers (in vitro) and human airway tissues (ex vivo). Our results highlight the SARS-CoV-2 HRC-derived lipopeptide as a promising therapeutic candidate for SARS-CoV-2 infections.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Lipopéptidos/farmacología , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antivirales/química , Betacoronavirus/química , Betacoronavirus/fisiología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Células HEK293 , Humanos , Lipopéptidos/química , Fusión de Membrana/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , Dominios Proteicos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2 , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...