Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 288, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177094

RESUMEN

The charge-transport properties of conjugated polymers have been studied extensively for opto-electronic device applications. Some polymer semiconductors not only support the ambipolar transport of electrons and holes, but do so with comparable carrier mobilities. This opens the possibility of gaining deeper insight into the charge-transport physics of these complex materials via comparison between electron and hole dynamics while keeping other factors, such as polymer microstructure, equal. Here, we use field-induced electron spin resonance spectroscopy to compare the spin relaxation behavior of electron and hole polarons in three ambipolar conjugated polymers. Our experiments show unique relaxation regimes as a function of temperature for electrons and holes, whereby at lower temperatures electrons relax slower than holes, but at higher temperatures, in the so-called spin-shuttling regime, the trend is reversed. On the basis of theoretical simulations, we attribute this to differences in the delocalization of electron and hole wavefunctions and show that spin relaxation in the spin shuttling regimes provides a sensitive probe of the intimate coupling between charge and structural dynamics.

2.
Phys Chem Chem Phys ; 24(38): 23758-23768, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36155601

RESUMEN

Herein, we investigate the structure-property relationships in a new series of benzothiazole based unsymmetrical hexafluorocyclopentene dithienylethenes (DTEs) and compare the results with the known facts for symmetric diarylethenes (DAEs). We reveal high photocyclization efficiency resulting from a significant shift of ground state equilibrium to the antiparallel conformation and a barrierless excited state pathway to conical intersection, which remains unperturbed even in polar solvents for most of the prepared DTEs. Furthermore, we uncover that the rate of back thermal cycloreversion correlates clearly more with the central C-C bond-length in the transition state than with the central C-C bond-length in the ground state of the cyclic form. Finally, our detailed vibrational spectral analysis of studied DTEs points out significant changes in Raman and infrared spectra during photoswitching cycles which pave the way for a non-destructive readout of stored information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...