Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(3): 2227-2233, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36594791

RESUMEN

Herein, we report the phase stability of the hydrogenated Ti2C MXene monolayer using an evolutionary algorithm based on density functional theory. We predict the existence of hexagonal Ti2CH, Ti2CH2, and Ti2CH4. The dynamic and energetic stabilities of the predicted structures are verified through phonon dispersion and formation energy, respectively. The electron-phonon coupling is carefully investigated by employing isotropic Eliashberg theory. The Tc values are 0.2 K, 2.3 K, and 9.0 K for Ti2CH, Ti2CH2, and Ti2CH4, respectively. The translation and libration adopted by stretch and bent vibrations contribute to the increasing Tc of Ti2CH4. The high-frequency hydrogen modes contribute to the critical temperature increase. Briefly, this work not only highlights the effect of H-content on the increments of Tc for Ti2CHx, but also demonstrates the first theoretical evidence of the existence of H-rich MXene in the example of Ti2CH4. Therefore, it potentially provides a guideline for developing hydrogenated 2D superconductive applications.

2.
J Phys Condens Matter ; 34(43)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35985303

RESUMEN

X-ray diffraction, Raman spectroscopy, and electrical resistivity measurements on polycrystalline WTe2-xSex(0 ⩽ x ⩽ 0.8) reveal aTd-1T'structural phase transition and suppression of magnetoresistance atx = 0.2. These phenomena are consistent with the pressure phase diagram of WTe2. However, chemical pressure due to substitution of smaller Se ion cannot generate pressure required for the phase transition. Strain induced by sample inhomogeneity is believed to be a trigger to the behaviors. In agreement with previous predictions and reports, a mixed phase of1T'and 2Hstructures was also detected in Se-rich samples. Coincidentally atx = 0.2, electrical resistivity analysis suggests a phase transition from a metallic phase to a nonmetallic phase that is possibly a topological-insulating phase.

3.
Phys Chem Chem Phys ; 23(24): 13535-13543, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34095934

RESUMEN

Through a combination of density functional theory calculations and cluster-expansion formalism, the effect of the configuration of the transition metal atoms and spin-orbit coupling on the thermodynamic stability and electronic bandgap of monolayer 2H-Mo1-xWxS2 is investigated. Our investigation reveals that, in spite of exhibiting a weak ordering tendency of Mo and W atoms at 0 K, monolayer 2H-Mo1-xWxS2 is thermodynamically stable as a single-phase random solid solution across the entire composition range at temperatures higher than 45 K. The spin-orbit coupling effect, induced mainly by W atoms, is found to have a minimal impact on the mixing thermodynamics of Mo and W atoms in monolayer 2H-Mo1-xWxS2; however, it significantly induces change in the electronic bandgap of the monolayer solid solution. We find that the band-gap energies of ordered and disordered solid solutions of monolayer 2H-Mo1-xWxS2 do not follow Vegard's law. In addition, the degree of the SOC-induced change in band-gap energy of monolayer 2H-Mo1-xWxS2 solid solutions not only depends on the Mo and W contents, but for a given alloy composition it is also affected by the configuration of the Mo and W atoms. This poses a challenge of fine-tuning the bandgap of monolayer 2H-Mo1-xWxS2 in practice just by varying the contents of Mo and W.

4.
J Phys Condens Matter ; 26(2): 025405, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24326302

RESUMEN

We used density functional theory to calculate the phase stability of the hcp (hexagonal close packed) and the fcc (face centered cubic) structures of ScH3. The hcp form is stable up to 22 GPa according to the generalized gradient approximation calculation. Then the fcc form becomes energetically more stable. In order to provide insight into the phase transition mechanism, we modeled the hcp to fcc transition by sliding the hcp basal planes, i.e. (001)h planes, in such a way that the ABABAB sequence of the hcp form is altered into the ABCABC sequence of the fcc form. This sliding was suggested by the experiment. The configurations of these sliding steps are our proposed intermediate configurations, whose symmetry group is the Cm group. By using the Cm crystallography, we can match the d-spacings from the lattice planes of the hcp and fcc forms and the intermediate planes measured from the experiment. We also calculated the enthalpy per step, from which the energy barrier between the two phases at various pressures was derived. The barrier at 35 GPa is 0.370 eV per formula or 0.093 eV/atom. The movements of the hydrogen atoms during the hcp to intermediate phase transition are consistent with the result from the Raman spectra.

5.
J Phys Condens Matter ; 24(9): 095802, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22322896

RESUMEN

The effects of Na atoms on high pressure structural phase transitions of CuIn(0.5)Ga(0.5)Se(2) (CIGS) were studied by an ab initio method using density functional theory. At ambient pressure, CIGS is known to have chalcopyrite (I42d) structure. The high pressure phase transitions of CIGS were proposed to be the same as the order in the CuInSe(2) phase transitions which are I42d → Fm3m → Cmcm structures. By using the mixture atoms method, the Na concentration in CIGS was studied at 0.1, 1.0 and 6.25%. The positive mixing enthalpy of Na at In/Ga sites (Na(InGa)) is higher than that of Na at Cu sites (Na(Cu)). It confirmed previous studies that Na preferably substitutes on the Cu sites more than the (In, Ga) sites. From the energy-volume curves, we found that the effect of the Na substitutes is to reduce the hardness of CIGS under high pressure. The most significant effects occur at 6.25% Na. We also found that the electronic density of states of CIGS near the valence band maximum is increased noticeably in the chalcopyrite phase. The band gap is close in the cubic and orthorhombic phases. Also, the Na(Cu)-Se bond length in the chalcopyrite phase is significantly reduced at 6.25% Na, compared with the pure Cu-Se bond length. Consequently, the energy band gap in this phase is wider than in pure CIGS, and the gap increased at the rate of 31 meV GPa(-1) under pressure. The Na has a small effect on the transition pressure. The path of transformation from the cubic to orthorhombic phase was derived. The Cu-Se plane in the cubic phase displaced relatively parallel to the (In, Ga)-Se plane by 18% in order to transform to the Cmcm phase. The enthalpy barrier is 0.020 eV/atom, which is equivalent to a thermal energy of 248 K. We predicted that Fm3m and Cmcm can coexist in some pressure range.


Asunto(s)
Cobre/química , Galio/química , Indio/química , Selenio/química , Sodio/química , Modelos Químicos , Transición de Fase , Presión
6.
J Phys Condens Matter ; 22(35): 355801, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-21403297

RESUMEN

The structural behaviour of CuInSe(2) under high pressure has been studied up to 53 GPa using angle-dispersive x-ray powder diffraction techniques. The previously reported structural phase transition from its ambient pressure tetragonal structure to a high pressure phase with a NaCl-like cubic structure at 7.6 GPa has been confirmed. On further compression, another structural phase transition is observed at 39 GPa. A full structural study of this high pressure phase has been carried out and the high pressure structure has been identified as orthorhombic with space group Cmcm and lattice parameters a = 4.867(8) Å, b = 5.023(8) Å and c = 4.980(3) Å at 53.2(2) GPa. This phase transition behaviour is similar to those of analogous binary and trinary semiconductors, where the orthorhombic Cmcm structure can also be viewed as a distortion of the cubic NaCl-type structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...