Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(5): 2872-2886, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38721671

RESUMEN

Antimicrobial coatings provide protection against microbes colonization on surfaces. This can prevent the stabilization and proliferation of microorganisms. The ever-increasing levels of microbial resistance to antimicrobials are urging the development of alternative types of compounds that are potent across broad spectra of microorganisms and target different pathways. This will help to slow down the development of resistance and ideally halt it. The development of composite antimicrobial coatings (CACs) that can host and protect various antimicrobial agents and release them on demand is an approach to address this urgent need. In this work, new CACs based on microsized hybrids of calcium carbonate (CaCO3) and silver nanoparticles (AgNPs) were designed using a drop-casting technique. Polyvinylpyrrolidone and mucin were used as additives. The CaCO3/AgNPs hybrids contributed to endowing colloidal stability to the AgNPs and controlling their release, thereby ensuring the antibacterial activity of the coatings. Moreover, the additives PVP and mucin served as a matrix to (i) control the distribution of the hybrids, (ii) ensure mechanical integrity, and (iii) prevent the undesired release of AgNPs. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques were used to characterize the 15 µm thick CAC. The antibacterial activity was determined against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa, three bacteria responsible for many healthcare infections. Antibacterial performance of the hybrids was demonstrated at concentrations between 15 and 30 µg/cm2. Unloaded CaCO3 also presented bactericidal properties against MRSA. In vitro cytotoxicity tests demonstrated that the hybrids at bactericidal concentrations did not affect human dermal fibroblasts and human mesenchymal stem cell viability. In conclusion, this work presents a simple approach for the design and testing of advanced multicomponent and functional antimicrobial coatings that can protect active agents and release them on demand.


Asunto(s)
Antibacterianos , Carbonato de Calcio , Ensayo de Materiales , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata , Carbonato de Calcio/química , Carbonato de Calcio/farmacología , Plata/química , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Nanopartículas del Metal/química , Humanos , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Escherichia coli/efectos de los fármacos , Propiedades de Superficie , Staphylococcus aureus/efectos de los fármacos
2.
J Exp Orthop ; 6(1): 40, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31659540

RESUMEN

BACKGROUND: Porous tantalum is currently used in orthopaedic surgery for a variety of indications including soft tissue re-attachment. However, the clinical results have been variable and a previous laboratory study has suggested that tantalum may actually inhibit chick tendon fibroblasts. The influence of tantalum on human cell-types involved in soft tissue re-attachment has not been defined. METHODS: Human fibroblasts, human osteoblasts and human mesenchymal stem cells were plated on glass cover slips, half of which were coated with tantalum. Cell numbers were assessed at 1, 2, 7 and 14 days using Cyquant® assay. Cell adhesion and morphology were assessed using light microscopy at 7, 14 and 28 days. To reduce the effect of an expected rate of error, n = 4 was utilised for each cell type and the experiment was repeated twice. RESULTS: Statistically similar numbers of human osteoblasts and human mesenchymal stem cells were present at 14 days on tantalum-coated and uncoated glass cover slips, revealing no inhibitory effect on cell proliferation. More than double the number of human fibroblasts was seen on tantalum-coated cover slips at that time point (compared to controls), which was statistically significant (p < 0.0001). Morphological assessment revealed normal cell spreading and adhesion on both substrates at all time points. CONCLUSIONS: In vitro study demonstrates that Tantalum causes a significant increase in the proliferation of human fibroblasts with no quantifiable negative effects seen on fibroblast behaviour after 28 days culture. Furthermore, tantalum does not exert any inhibitory effects on the proliferation or behaviour of human osteoblasts or human mesenchymal stem cells. Tantalum could be an appropriate biomaterial for use in situations where soft tissue requires direct reattachment to implants and may stimulate soft tissue healing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...