Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Clin Genet ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857973

RESUMEN

MPDZ, a gene with diverse functions mediating cell-cell junction interactions, receptor signaling, and binding multivalent scaffold proteins, is associated with a spectrum of clinically heterogeneous phenotypes with biallelic perturbation. Despite its clinical relevance, the mechanistic underpinnings of these variants remain elusive, underscoring the need for extensive case series and functional investigations. In this study, we conducted a systematic review of cases in the literature through two electronic databases following the PRISMA guidelines. We selected nine studies, including 18 patients, with homozygous or compound heterozygous variants in MPDZ and added five patients from four unrelated families with novel MPDZ variants. To evaluate the role of Mpdz on hearing, we analyzed available auditory electrophysiology data from a knockout murine model (Mpdzem1(IMPC)J/em1(IMPC)J) generated by the International Mouse Phenotyping Consortium. Using exome and genome sequencing, we identified three families with compound heterozygous variants, and one family with a homozygous frameshift variant. MPDZ-related disease is clinically heterogenous with hydrocephaly, vision impairment, hearing impairment and cardiovascular disease occurring most frequently. Additionally, we describe two unrelated patients with spasticity, expanding the phenotypic spectrum. Our murine analysis of the Mpdzem1(IMPC)J/em1(IMPC)J allele showed severe hearing impairment. Overall, we expand understanding of MPDZ-related phenotypes and highlight hearing impairment and spasticity among the heterogeneous phenotypes.

2.
Cell Rep ; 43(4): 114025, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38564333

RESUMEN

Type I spiral ganglion neurons (SGNs) convey sound information to the central auditory pathway by forming synapses with inner hair cells (IHCs) in the mammalian cochlea. The molecular mechanisms regulating the formation of the post-synaptic density (PSD) in the SGN afferent terminals are still unclear. Here, we demonstrate that brain-specific angiogenesis inhibitor 1 (BAI1) is required for the clustering of AMPA receptors GluR2-4 (glutamate receptors 2-4) at the PSD. Adult Bai1-deficient mice have functional IHCs but fail to transmit information to the SGNs, leading to highly raised hearing thresholds. Despite the almost complete absence of AMPA receptor subunits, the SGN fibers innervating the IHCs do not degenerate. Furthermore, we show that AMPA receptors are still expressed in the cochlea of Bai1-deficient mice, highlighting a role for BAI1 in trafficking or anchoring GluR2-4 to the PSDs. These findings identify molecular and functional mechanisms required for sound encoding at cochlear ribbon synapses.


Asunto(s)
Cóclea , Audición , Densidad Postsináptica , Receptores AMPA , Receptores Acoplados a Proteínas G , Ganglio Espiral de la Cóclea , Animales , Receptores AMPA/metabolismo , Ratones , Ganglio Espiral de la Cóclea/metabolismo , Audición/fisiología , Cóclea/metabolismo , Densidad Postsináptica/metabolismo , Ratones Noqueados , Células Ciliadas Auditivas Internas/metabolismo , Ratones Endogámicos C57BL , Sinapsis/metabolismo
3.
Mol Ther ; 32(3): 800-817, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38243601

RESUMEN

Hearing loss is a major health concern affecting millions of people worldwide with currently limited treatment options. In clarin-2-deficient Clrn2-/- mice, used here as a model of progressive hearing loss, we report synaptic auditory abnormalities in addition to the previously demonstrated defects of hair bundle structure and mechanoelectrical transduction. We sought an in-depth evaluation of viral-mediated gene delivery as a therapy for these hearing-impaired mice. Supplementation with either the murine Clrn2 or human CLRN2 genes preserved normal hearing in treated Clrn2-/- mice. Conversely, mutated forms of CLRN2, identified in patients with post-lingual moderate to severe hearing loss, failed to prevent hearing loss. The ectopic expression of clarin-2 successfully prevented the loss of stereocilia, maintained normal mechanoelectrical transduction, preserved inner hair cell synaptic function, and ensured near-normal hearing thresholds over time. Maximal hearing preservation was observed when Clrn2 was delivered prior to the loss of transducing stereocilia. Our findings demonstrate that gene therapy is effective for the treatment of post-lingual hearing impairment and age-related deafness associated with CLRN2 patient mutations.


Asunto(s)
Células Ciliadas Auditivas , Pérdida Auditiva , Humanos , Animales , Ratones , Células Ciliadas Auditivas/metabolismo , Audición , Pérdida Auditiva/genética , Pérdida Auditiva/terapia , Estereocilios/metabolismo , Suplementos Dietéticos
4.
iScience ; 26(10): 108056, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37854703

RESUMEN

Mouse studies continue to help elaborate upon the genetic landscape of mammalian disease and the underlying molecular mechanisms. Here, we have investigated an Embigintm1b allele maintained on a standard C57BL/6N background and on a co-isogenic C57BL/6N background in which the Cdh23ahl allele has been "repaired." The hypomorphic Cdh23ahl allele is present in several commonly used inbred mouse strains, predisposing them to progressive hearing loss, starting in high-frequency regions. Absence of the neural cell adhesion molecule Embigin on the standard C57BL/6N background leads to accelerated hearing loss and causes sub-viability, brain and cardiac defects. Contrastingly, Embigintm1b/tm1b mice maintained on the co-isogenic "repaired" C57BL/6N background exhibit normal hearing and viability. Thus Embigin genetically interacts with Cdh23. Importantly, our study is the first to demonstrate an effect of the common Cdh23ahl allele outside of the auditory system, which has important ramifications for genetic studies involving inbred strains carrying this allele.

5.
medRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38196618

RESUMEN

To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following in silico triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with UCHL1 , and independent confirmatory evidence has recently been published for four more. We highlight a further seven compelling associations: hypertrophic cardiomyopathy with DYSF and SLC4A3 where both genes show high/specific heart expression and existing associations to skeletal dystrophies or short QT syndrome respectively; monogenic diabetes with UNC13A with a known role in the regulation of ß cells and a mouse model with impaired glucose tolerance; epilepsy with KCNQ1 where a mouse model shows seizures and the existing long QT syndrome association may be linked; early onset Parkinson's disease with RYR1 with existing links to tremor pathophysiology and a mouse model with neurological phenotypes; anterior segment ocular abnormalities associated with POMK showing expression in corneal cells and with a zebrafish model with developmental ocular abnormalities; and cystic kidney disease with COL4A3 showing high renal expression and prior evidence for a digenic or modifying role in renal disease. Confirmation of all 88 associations would lead to potential diagnoses in 456 molecularly undiagnosed cases within the 100KGP, as well as other rare disease patients worldwide, highlighting the clinical impact of a large-scale statistical approach to rare disease gene discovery.

6.
F1000Res ; 11: 651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35949916

RESUMEN

Background: The environmental housing conditions of laboratory animals are important for both welfare and reliable, reproducible data. Guidelines currently exist for factors such as lighting cycles, temperature, humidity, and noise, however, for the latter the current guidelines may overlook important details. In the case of the most common laboratory species, the mouse, the range of frequencies they can hear is far higher than that of humans. The current guidelines briefly mention that ultrasonic (>20 kHz) frequencies can adversely affect mice, and that the acoustic environment should be checked, though no recommendations are provided relating to acceptable levels of ultrasonic noise. Methods: To investigate the ultrasonic environment in a large mouse breeding facility (the Mary Lyon Centre at MRC Harwell), we compared two systems, the Hottinger Bruel and Kjaer PULSE sound analyser, and an Avisoft Bioacoustics system. Potential noise sources were selected; we used the PULSE system to undertake real-time Fourier analysis of noise up to 100 kHz, and the Avisoft system to record noise up to 125 kHz for later analysis. The microphones from both systems were positioned consistently at the same distance from the source and environmental conditions were identical. In order to investigate our result further, a third system, the AudioMoth (Open Acoustic Devices), was also used for recording. We used DeepSqueak software for most of the recording analysis and, in some cases, we also undertook further spectral analysis using RX8 (iZotope, USA). Results: We found that both systems can detect a range of ultrasonic noise sources, and here discuss the benefits and limitations of each approach. Conclusions: We conclude that measuring the acoustic environment of animal facilities, including ultrasonic frequencies that may adversely affect the animals housed, will contribute to minimising disruption to animal welfare and perturbations in scientific research.


Asunto(s)
Ruido , Ultrasonido , Acústica , Animales , Humanos , Ratones , Ruido/efectos adversos
7.
Mol Ther Methods Clin Dev ; 26: 355-370, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36034774

RESUMEN

The transduction of acoustic information by hair cells depends upon mechanosensitive stereociliary bundles that project from their apical surface. Mutations or absence of the stereociliary protein EPS8 cause deafness in humans and mice, respectively. Eps8 knockout mice (Eps8 -/- ) have hair cells with immature stereocilia and fail to become sensory receptors. Here, we show that exogenous delivery of Eps8 using Anc80L65 in P1-P2 Eps8 -/- mice in vivo rescued the hair bundle structure of apical-coil hair cells. Rescued hair bundles correctly localize EPS8, WHIRLIN, MYO15, and BAIAP2L2, and generate normal mechanoelectrical transducer currents. Inner hair cells with normal-looking stereocilia re-expressed adult-like basolateral ion channels (BK and KCNQ4) and have normal exocytosis. The number of hair cells undergoing full recovery was not sufficient to rescue hearing in Eps8 -/- mice. Adeno-associated virus (AAV)-transduction of P3 apical-coil and P1-P2 basal-coil hair cells does not rescue hair cells, nor does Anc80L65-Eps8 delivery in adult Eps8 -/- mice. We propose that AAV-induced gene-base therapy is an efficient strategy to recover the complex hair-cell defects in Eps8 -/- mice. However, this therapeutic approach may need to be performed in utero since, at postnatal ages, Eps8 -/- hair cells appear to have matured or accumulated damage beyond the point of repair.

8.
Sci Adv ; 8(29): eabl4733, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35857845

RESUMEN

The motor protein myosin-15 is necessary for the development and maintenance of mechanosensory stereocilia, and mutations in myosin-15 cause hereditary deafness. In addition to transporting actin regulatory machinery to stereocilia tips, myosin-15 directly nucleates actin filament ("F-actin") assembly, which is disrupted by a progressive hearing loss mutation (p.D1647G, "jordan"). Here, we present cryo-electron microscopy structures of myosin-15 bound to F-actin, providing a framework for interpreting the impacts of deafness mutations on motor activity and actin nucleation. Rigor myosin-15 evokes conformational changes in F-actin yet maintains flexibility in actin's D-loop, which mediates inter-subunit contacts, while the jordan mutant locks the D-loop in a single conformation. Adenosine diphosphate-bound myosin-15 also locks the D-loop, which correspondingly blunts actin-polymerization stimulation. We propose myosin-15 enhances polymerization by bridging actin protomers, regulating nucleation efficiency by modulating actin's structural plasticity in a myosin nucleotide state-dependent manner. This tunable regulation of actin polymerization could be harnessed to precisely control stereocilium height.

9.
PLoS Genet ; 18(1): e1009937, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100259

RESUMEN

Mammalian hearing involves the mechanoelectrical transduction (MET) of sound-induced fluid waves in the cochlea. Essential to this process are the specialised sensory cochlear cells, the inner (IHCs) and outer hair cells (OHCs). While genetic hearing loss is highly heterogeneous, understanding the requirement of each gene will lead to a better understanding of the molecular basis of hearing and also to therapeutic opportunities for deafness. The Neuroplastin (Nptn) gene, which encodes two protein isoforms Np55 and Np65, is required for hearing, and homozygous loss-of-function mutations that affect both isoforms lead to profound deafness in mice. Here we have utilised several distinct mouse models to elaborate upon the spatial, temporal, and functional requirement of Nptn for hearing. While we demonstrate that both Np55 and Np65 are present in cochlear cells, characterisation of a Np65-specific mouse knockout shows normal hearing thresholds indicating that Np65 is functionally redundant for hearing. In contrast, we find that Nptn-knockout mice have significantly reduced maximal MET currents and MET channel open probabilities in mature OHCs, with both OHCs and IHCs also failing to develop fully mature basolateral currents. Furthermore, comparing the hearing thresholds and IHC synapse structure of Nptn-knockout mice with those of mice that lack Nptn only in IHCs and OHCs shows that the majority of the auditory deficit is explained by hair cell dysfunction, with abnormal afferent synapses contributing only a small proportion of the hearing loss. Finally, we show that continued expression of Neuroplastin in OHCs of adult mice is required for membrane localisation of Plasma Membrane Ca2+ ATPase 2 (PMCA2), which is essential for hearing function. Moreover, Nptn haploinsufficiency phenocopies Atp2b2 (encodes PMCA2) mutations, with heterozygous Nptn-knockout mice exhibiting hearing loss through genetic interaction with the Cdh23ahl allele. Together, our findings provide further insight to the functional requirement of Neuroplastin for mammalian hearing.


Asunto(s)
Cadherinas/genética , Células Ciliadas Auditivas Internas/fisiología , Audición/genética , Glicoproteínas de Membrana/genética , Isoformas de Proteínas/genética , Animales , Mutación con Pérdida de Función , Ratones , Ratones Noqueados , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo
10.
Hum Genet ; 140(6): 915-931, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33496845

RESUMEN

Deafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.


Asunto(s)
Sustitución de Aminoácidos , Cromosomas Humanos Par 4/química , Células Ciliadas Auditivas Internas/metabolismo , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Mutación Puntual , Tetraspaninas/genética , Adulto , Alelos , Animales , Secuencia de Bases , Mapeo Cromosómico , Consanguinidad , Femenino , Expresión Génica , Genes Recesivos , Células Ciliadas Auditivas Internas/patología , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Proteínas de la Membrana/deficiencia , Ratones , Linaje , Tetraspaninas/deficiencia , Secuenciación del Exoma , Pez Cebra
11.
J Physiol ; 599(4): 1173-1198, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33151556

RESUMEN

KEY POINTS: Mechanoelectrical transduction at auditory hair cells requires highly specialized stereociliary bundles that project from their apical surface, forming a characteristic graded 'staircase' structure. The morphogenesis and maintenance of these stereociliary bundles is a tightly regulated process requiring the involvement of several actin-binding proteins, many of which are still unidentified. We identify a new stereociliary protein, the I-BAR protein BAIAP2L2, which localizes to the tips of the shorter transducing stereocilia in both inner and outer hair cells (IHCs and OHCs). We find that Baiap2l2 deficient mice lose their second and third rows of stereocilia, their mechanoelectrical transducer current, and develop progressive hearing loss, becoming deaf by 8 months of age. We demonstrate that BAIAP2L2 localization to stereocilia tips is dependent on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is a new key protein required for the maintenance of the transducing stereocilia in mature cochlear hair cells. ABSTRACT: The transduction of sound waves into electrical signals depends upon mechanosensitive stereociliary bundles that project from the apical surface of hair cells within the cochlea. The height and width of these actin-based stereocilia is tightly regulated throughout life to establish and maintain their characteristic staircase-like structure, which is essential for normal mechanoelectrical transduction. Here, we show that BAIAP2L2, a member of the I-BAR protein family, is a newly identified hair bundle protein that is localized to the tips of the shorter rows of transducing stereocilia in mouse cochlear hair cells. BAIAP2L2 was detected by immunohistochemistry from postnatal day 2.5 (P2.5) throughout adulthood. In Baiap2l2 deficient mice, outer hair cells (OHCs), but not inner hair cells (IHCs), began to lose their third row of stereocilia and showed a reduction in the size of the mechanoelectrical transducer current from just after P9. Over the following post-hearing weeks, the ordered staircase structure of the bundle progressively deteriorates, such that, by 8 months of age, both OHCs and IHCs of Baiap2l2 deficient mice have lost most of the second and third rows of stereocilia and become deaf. We also found that BAIAP2L2 interacts with other key stereociliary proteins involved in normal hair bundle morphogenesis, such as CDC42, RAC1, EPS8 and ESPNL. Furthermore, we show that BAIAP2L2 localization to the stereocilia tips depends on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is key to maintenance of the normal actin structure of the transducing stereocilia in mature mouse cochlear hair cells.


Asunto(s)
Sordera , Proteínas de la Membrana , Estereocilios , Animales , Sordera/genética , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Proteínas de la Membrana/genética , Ratones , Proteínas de Microfilamentos
12.
J Physiol ; 599(1): 269-287, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33179774

RESUMEN

KEY POINTS: Age-related hearing loss is a progressive hearing loss involving environmental and genetic factors, leading to a decrease in hearing sensitivity, threshold and speech discrimination. We compared age-related changes in inner hair cells (IHCs) between four mouse strains with different levels of progressive hearing loss. The surface area of apical coil IHCs (9-12 kHz cochlear region) decreases by about 30-40% with age. The number of BK channels progressively decreases with age in the IHCs from most mouse strains, but the basolateral membrane current profile remains unchanged. The mechanoelectrical transducer current is smaller in mice harbouring the hypomorphic Cdh23 allele Cdh23ahl (C57BL/6J; C57BL/6NTac), but not in Cdh23-repaired mice (C57BL/6NTacCdh23+ ), indicating that it could contribute to the different progression of hearing loss among mouse strains. The degree of efferent rewiring onto aged IHCs, most likely coming from the lateral olivocochlea fibres, was correlated with hearing loss in the different mouse strains. ABSTRACT: Inner hair cells (IHCs) are the primary sensory receptors of the mammalian cochlea, transducing acoustic information into electrical signals that are relayed to the afferent neurons. Functional changes in IHCs are a potential cause of age-related hearing loss. Here, we have investigated the functional characteristics of IHCs from early-onset hearing loss mice harbouring the allele Cdh23ahl (C57BL/6J and C57BL/6NTac), from late-onset hearing loss mice (C3H/HeJ), and from mice corrected for the Cdh23ahl mutation (C57BL/6NTacCdh23+ ) with an intermediate hearing phenotype. There was no significant loss of IHCs in the 9-12 kHz cochlear region up to at least 15 months of age, but their surface area decreased progressively by 30-40% starting from ∼6 months of age. Although the size of the BK current decreased with age, IHCs retained a normal KCNQ4 current and resting membrane potential. These basolateral membrane changes were most severe for C57BL/6J and C57BL/6NTac, less so for C57BL/6NTacCdh23+ and minimal or absent in C3H/HeJ mice. We also found that lateral olivocochlear (LOC) efferent fibres re-form functional axon-somatic connections with aged IHCs, but this was seen only sporadically in C3H/HeJ mice. The efferent post-synaptic SK2 channels appear prior to the establishment of the efferent contacts, suggesting that IHCs may play a direct role in re-establishing the LOC-IHC synapses. Finally, we showed that the size of the mechanoelectrical transducer (MET) current from IHCs decreased significantly with age in mice harbouring the Cdh23ahl allele but not in C57BL/6NTacCdh23+ mice, indicating that the MET apparatus directly contributes to the progression of age-related hearing loss.


Asunto(s)
Células Ciliadas Auditivas Internas , Canales de Potasio de Gran Conductancia Activados por el Calcio , Animales , Cadherinas/genética , Cadherinas/metabolismo , Cóclea/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL
13.
Sci Adv ; 6(33): eabb3567, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32851175

RESUMEN

Switches between global sleep and wakefulness states are believed to be dictated by top-down influences arising from subcortical nuclei. Using forward genetics and in vivo electrophysiology, we identified a recessive mouse mutant line characterized by a substantially reduced propensity to transition between wake and sleep states with an especially pronounced deficit in initiating rapid eye movement (REM) sleep episodes. The causative mutation, an Ile102Asn substitution in the synaptic vesicular protein, VAMP2, was associated with morphological synaptic changes and specific behavioral deficits, while in vitro electrophysiological investigations with fluorescence imaging revealed a markedly diminished probability of vesicular release in mutants. Our data show that global shifts in the synaptic efficiency across brain-wide networks leads to an altered probability of vigilance state transitions, possibly as a result of an altered excitability balance within local circuits controlling sleep-wake architecture.


Asunto(s)
Sueño REM , Sueño , Animales , Encéfalo/fisiología , Fenómenos Electrofisiológicos , Ratones , Sueño/genética , Sueño REM/genética , Vigilia/genética
14.
J Physiol ; 598(19): 4339-4355, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32710572

RESUMEN

KEY POINTS: Age-related hearing loss (ARHL) is associated with the loss of inner hair cell (IHC) ribbon synapses, lower hearing sensitivity and decreased ability to understand speech, especially in a noisy environment. Little is known about the age-related physiological and morphological changes that occur at ribbon synapses. We show that the differing degrees of ARHL in four selected mouse stains is correlated with the loss of ribbon synapses, being most severe for the strains C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ -Repaired and lowest for C3H/HeJ. Despite the loss of ribbon synapses with age, the volume of the remaining ribbons increased and the size and kinetics of Ca2+ -dependent exocytosis in IHCs was unaffected, indicating the presence of a previously unknown degree of functional compensation at ribbon synapses. Although the age-related morphological changes at IHC ribbon synapses contribute to the different progression of ARHL, without the observed functional compensation hearing loss could be greater. ABSTRACT: Mammalian cochlear inner hair cells (IHCs) are specialized sensory receptors able to provide dynamic coding of sound signals. This ability is largely conferred by their ribbon synapses, which tether a large number of vesicles at the IHC's presynaptic active zones, allowing high rates of sustained synaptic transmission onto the afferent fibres. How the physiological and morphological properties of ribbon synapses change with age remains largely unknown. Here, we have investigated the biophysical and morphological properties of IHC ribbon synapses in the ageing cochlea (9-12 kHz region) of four mouse strains commonly used in hearing research: early-onset progressive hearing loss (C57BL/6J and C57BL/6NTac) and 'good hearing' strains (C57BL/6NTacCdh23+ and C3H/HeJ). We found that with age, both modiolar and pillar sides of the IHC exhibited a loss of ribbons, but there was an increased volume of those that remained. These morphological changes, which only occurred after 6 months of age, were correlated with the level of hearing loss in the different mouse strains, being most severe for C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ and absent for C3H/HeJ strains. Despite the age-related reduction in ribbon number in three of the four strains, the size and kinetics of Ca2+ -dependent exocytosis, as well as the replenishment of synaptic vesicles, in IHCs was not affected. The degree of vesicle release at the fewer, but larger, individual remaining ribbon synapses colocalized with the post-synaptic afferent terminals is likely to increase, indicating the presence of a previously unknown degree of functional compensation in the ageing mouse cochlea.


Asunto(s)
Cóclea , Células Ciliadas Auditivas Internas , Envejecimiento , Animales , Cadherinas , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Sinapsis
15.
J Physiol ; 598(18): 3891-3910, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32608086

RESUMEN

KEY POINTS: Age-related hearing loss (ARHL) is a very heterogeneous disease, resulting from cellular senescence, genetic predisposition and environmental factors (e.g. noise exposure). Currently, we know very little about age-related changes occurring in the auditory sensory cells, including those associated with the outer hair cells (OHCs). Using different mouse strains, we show that OHCs undergo several morphological and biophysical changes in the ageing cochlea. Ageing OHCs also exhibited the progressive loss of afferent and efferent synapses. We also provide evidence that the size of the mechanoelectrical transducer current is reduced in ageing OHCs, highlighting its possible contribution in cochlear ageing. ABSTRACT: Outer hair cells (OHCs) are electromotile sensory receptors that provide sound amplification within the mammalian cochlea. Although OHCs appear susceptible to ageing, the progression of the pathophysiological changes in these cells is still poorly understood. By using mouse strains with a different progression of hearing loss (C57BL/6J, C57BL/6NTac, C57BL/6NTacCdh23+ , C3H/HeJ), we have identified morphological, physiological and molecular changes in ageing OHCs (9-12 kHz cochlear region). We show that by 6 months of age, OHCs from all strains underwent a reduction in surface area, which was not a sign of degeneration. Although the ageing OHCs retained a normal basolateral membrane protein profile, they showed a reduction in the size of the K+ current and non-linear capacitance, a readout of prestin-dependent electromotility. Despite these changes, OHCs have a normal Vm and retain the ability to amplify sound, as distortion product otoacoustic emission thresholds were not affected in aged, good-hearing mice (C3H/HeJ, C57BL/6NTacCdh23+ ). The loss of afferent synapses was present in all strains at 15 months. The number of efferent synapses per OHCs, defined as postsynaptic SK2 puncta, was reduced in aged OHCs of all strains apart from C3H mice. Several of the identified changes occurred in aged OHCs from all mouse strains, thus representing a general trait in the pathophysiological progression of age-related hearing loss, possibly aimed at preserving functionality. We have also shown that the mechanoelectrical transduction (MET) current from OHCs of mice harbouring the Cdh23ahl allele is reduced with age, highlighting the possibility that changes in the MET apparatus could play a role in cochlear ageing.


Asunto(s)
Células Ciliadas Auditivas Externas , Emisiones Otoacústicas Espontáneas , Animales , Cadherinas , Cóclea , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL
16.
EMBO Mol Med ; 11(9): e10288, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31448880

RESUMEN

Hearing relies on mechanically gated ion channels present in the actin-rich stereocilia bundles at the apical surface of cochlear hair cells. Our knowledge of the mechanisms underlying the formation and maintenance of the sound-receptive structure is limited. Utilizing a large-scale forward genetic screen in mice, genome mapping and gene complementation tests, we identified Clrn2 as a new deafness gene. The Clrn2clarinet/clarinet mice (p.Trp4* mutation) exhibit a progressive, early-onset hearing loss, with no overt retinal deficits. Utilizing data from the UK Biobank study, we could show that CLRN2 is involved in human non-syndromic progressive hearing loss. Our in-depth morphological, molecular and functional investigations establish that while it is not required for initial formation of cochlear sensory hair cell stereocilia bundles, clarin-2 is critical for maintaining normal bundle integrity and functioning. In the differentiating hair bundles, lack of clarin-2 leads to loss of mechano-electrical transduction, followed by selective progressive loss of the transducing stereocilia. Together, our findings demonstrate a key role for clarin-2 in mammalian hearing, providing insights into the interplay between mechano-electrical transduction and stereocilia maintenance.


Asunto(s)
Pérdida Auditiva/metabolismo , Estereocilios/metabolismo , Adulto , Anciano , Animales , Estudios de Cohortes , Femenino , Células Ciliadas Auditivas/metabolismo , Audición , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Persona de Mediana Edad , Estereocilios/genética
17.
Hum Mol Genet ; 28(4): 584-597, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30335140

RESUMEN

Mutations in the Tre2/Bub2/Cdc16 (TBC)1 domain family member 24 (TBC1D24) gene are associated with a range of inherited neurological disorders, from drug-refractory lethal epileptic encephalopathy and DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, seizures) to non-syndromic hearing loss. TBC1D24 has been implicated in neuronal transmission and maturation, although the molecular function of the gene and the cause of the apparently complex disease spectrum remain unclear. Importantly, heterozygous TBC1D24 mutation carriers have also been reported with seizures, suggesting that haploinsufficiency for TBC1D24 is significant clinically. Here we have systematically investigated an allelic series of disease-associated mutations in neurons alongside a new mouse model to investigate the consequences of TBC1D24 haploinsufficiency to mammalian neurodevelopment and synaptic physiology. The cellular studies reveal that disease-causing mutations that disrupt either of the conserved protein domains in TBC1D24 are implicated in neuronal development and survival and are likely acting as loss-of-function alleles. We then further investigated TBC1D24 haploinsufficiency in vivo and demonstrate that TBC1D24 is also crucial for normal presynaptic function: genetic disruption of Tbc1d24 expression in the mouse leads to an impairment of endocytosis and an enlarged endosomal compartment in neurons with a decrease in spontaneous neurotransmission. These data reveal the essential role for TBC1D24 at the mammalian synapse and help to define common synaptic mechanisms that could underlie the varied effects of TBC1D24 mutations in neurological disease.


Asunto(s)
Proteínas Portadoras/genética , Anomalías Craneofaciales/genética , Epilepsia/genética , Deformidades Congénitas de la Mano/genética , Pérdida Auditiva Sensorineural/genética , Discapacidad Intelectual/genética , Uñas Malformadas/genética , Convulsiones/genética , Secuencia de Aminoácidos/genética , Animales , Anomalías Craneofaciales/fisiopatología , Modelos Animales de Enfermedad , Endocitosis/genética , Epilepsia/fisiopatología , Exoma/genética , Proteínas Activadoras de GTPasa , Regulación de la Expresión Génica , Deformidades Congénitas de la Mano/fisiopatología , Haploinsuficiencia , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Discapacidad Intelectual/fisiopatología , Proteínas de la Membrana , Ratones , Mutación , Uñas Malformadas/fisiopatología , Proteínas del Tejido Nervioso , Plasticidad Neuronal/genética , Neuronas/metabolismo , Neuronas/patología , Linaje , Convulsiones/fisiopatología
18.
Artículo en Inglés | MEDLINE | ID: mdl-30291149

RESUMEN

Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly. This progressive hearing impairment leads to social isolation and is also associated with comorbidities, such as frailty, falls, and late-onset depression. Moreover, there is a growing evidence linking it with cognitive decline and increased risk of dementia. Given the large social and welfare burden that results from ARHL, and because ARHL is potentially a modifiable risk factor for dementia, there is an urgent need for therapeutic interventions to ameliorate age-related auditory decline. However, a prerequisite for design of therapies is knowledge of the underlying molecular mechanisms. Currently, our understanding of ARHL is very limited. Here, we review recent findings from research into ARHL from both human and animal studies and discuss future prospects for advances in our understanding of genetic susceptibility, pathology, and potential therapeutic approaches in ARHL.


Asunto(s)
Disfunción Cognitiva , Demencia/epidemiología , Presbiacusia/epidemiología , Anciano , Animales , Comorbilidad , Modelos Animales de Enfermedad , Humanos , Ratones , Presbiacusia/genética , Presbiacusia/terapia , Factores de Riesgo
19.
Cell Rep ; 25(12): 3315-3328.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566859

RESUMEN

Mutations in genes essential for mitochondrial function have pleiotropic effects. The mechanisms underlying these traits yield insights into metabolic homeostasis and potential therapies. Here we report the characterization of a mouse model harboring a mutation in the tryptophanyl-tRNA synthetase 2 (Wars2) gene, encoding the mitochondrial-localized WARS2 protein. This hypomorphic allele causes progressive tissue-specific pathologies, including hearing loss, reduced adiposity, adipose tissue dysfunction, and hypertrophic cardiomyopathy. We demonstrate the tissue heterogeneity arises as a result of variable activation of the integrated stress response (ISR) pathway and the ability of certain tissues to respond to impaired mitochondrial translation. Many of the systemic metabolic effects are likely mediated through elevated fibroblast growth factor 21 (FGF21) following activation of the ISR in certain tissues. These findings demonstrate the potential pleiotropy associated with Wars2 mutations in patients.


Asunto(s)
Especificidad de Órganos , Fosforilación Oxidativa , Estrés Fisiológico , Triptófano-ARNt Ligasa/genética , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/patología , Adiposidad , Alelos , Empalme Alternativo/genética , Animales , Secuencia de Bases , Peso Corporal , Encéfalo/patología , Cardiomiopatía Hipertrófica/sangre , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/fisiopatología , Modelos Animales de Enfermedad , Transporte de Electrón , Potenciales Evocados Auditivos del Tronco Encefálico , Exones/genética , Factores de Crecimiento de Fibroblastos/sangre , Fibroblastos/metabolismo , Pérdida Auditiva/sangre , Pérdida Auditiva/complicaciones , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Ratones , Ratones Mutantes , Músculo Esquelético/metabolismo , Mutación/genética , Biogénesis de Organelos , Triptófano-ARNt Ligasa/metabolismo , Regulación hacia Arriba
20.
Nature ; 563(7733): 696-700, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464345

RESUMEN

The sensory cells that are responsible for hearing include the cochlear inner hair cells (IHCs) and outer hair cells (OHCs), with the OHCs being necessary for sound sensitivity and tuning1. Both cell types are thought to arise from common progenitors; however, our understanding of the factors that control the fate of IHCs and OHCs remains limited. Here we identify Ikzf2 (which encodes Helios) as an essential transcription factor in mice that is required for OHC functional maturation and hearing. Helios is expressed in postnatal mouse OHCs, and in the cello mouse model a point mutation in Ikzf2 causes early-onset sensorineural hearing loss. Ikzf2cello/cello OHCs have greatly reduced prestin-dependent electromotile activity, a hallmark of OHC functional maturation, and show reduced levels of crucial OHC-expressed genes such as Slc26a5 (which encodes prestin) and Ocm. Moreover, we show that ectopic expression of Ikzf2 in IHCs: induces the expression of OHC-specific genes; reduces the expression of canonical IHC genes; and confers electromotility to IHCs, demonstrating that Ikzf2 can partially shift the IHC transcriptome towards an OHC-like identity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Células Ciliadas Auditivas Externas/citología , Células Ciliadas Auditivas Externas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Transcriptoma/genética , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...