Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 8(5): 486-491, 2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28523098

RESUMEN

A data-centric medicinal chemistry approach led to the invention of a potent and selective IDO1 inhibitor 4f, INCB24360 (epacadostat). The molecular structure of INCB24360 contains several previously unknown or underutilized functional groups in drug substances, including a hydroxyamidine, furazan, bromide, and sulfamide. These moieties taken together in a single structure afford a compound that falls outside of "drug-like" space. Nevertheless, the in vitro ADME data is consistent with the good cell permeability and oral bioavailability observed in all species (rat, dog, monkey) tested. The extensive intramolecular hydrogen bonding observed in the small molecule crystal structure of 4f is believed to significantly contribute to the observed permeability and PK. Epacadostat in combination with anti-PD1 mAb pembrolizumab is currently being studied in a phase 3 clinical trial in patients with unresectable or metastatic melanoma.

2.
Clin Cancer Res ; 23(13): 3269-3276, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28053021

RESUMEN

Purpose: Indoleamine 2,3-dioxygenase-1 (IDO1) catalyzes the degradation of tryptophan to N-formyl-kynurenine. Overexpressed in many solid malignancies, IDO1 can promote tumor escape from host immunosurveillance. This first-in-human phase I study investigated the maximum tolerated dose, safety, pharmacokinetics, pharmacodynamics, and antitumor activity of epacadostat (INCB024360), a potent and selective inhibitor of IDO1.Experimental Design: Fifty-two patients with advanced solid malignancies were treated with epacadostat [50 mg once daily or 50, 100, 300, 400, 500, 600, or 700 mg twice daily (BID)] in a dose-escalation 3 + 3 design and evaluated in 28-day cycles. Treatment was continued until disease progression or unacceptable toxicity.Results: One dose-limiting toxicity (DLT) occurred at the dose of 300 mg BID (grade 3, radiation pneumonitis); another DLT occurred at 400 mg BID (grade 3, fatigue). The most common adverse events in >20% of patients overall were fatigue, nausea, decreased appetite, vomiting, constipation, abdominal pain, diarrhea, dyspnea, back pain, and cough. Treatment produced significant dose-dependent reductions in plasma kynurenine levels and in the plasma kynurenine/tryptophan ratio at all doses and in all patients. Near maximal changes were observed at doses of ≥100 mg BID with >80% to 90% inhibition of IDO1 achieved throughout the dosing period. Although no objective responses were detected, stable disease lasting ≥16 weeks was observed in 7 of 52 patients.Conclusions: Epacadostat was generally well tolerated, effectively normalized kynurenine levels, and produced maximal inhibition of IDO1 activity at doses of ≥100 mg BID. Studies investigating epacadostat in combination with other immunomodulatory drugs are ongoing. Clin Cancer Res; 23(13); 3269-76. ©2017 AACR.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Neoplasias/tratamiento farmacológico , Oximas/administración & dosificación , Sulfonamidas/administración & dosificación , Administración Oral , Adulto , Anciano , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/clasificación , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias/genética , Neoplasias/patología
3.
J Clin Pharmacol ; 57(6): 720-729, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27990653

RESUMEN

Epacadostat (EPA, INCB024360) is a selective inhibitor of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) and is being developed as an orally active immunotherapy to treat advanced malignancies. In the first clinical study investigating the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of EPA in oncology patients, increasing doses of EPA ranging from 50 mg once daily to 700 mg twice daily were administered as a monotherapy to 52 subjects with advanced solid tumors. The EPA plasma concentration-time profiles were adequately described by a population PK model comprised of the first-order kinetics of oral absorption with 2-compartment distribution and constant clearance from the central compartment. Body weight was the only significant covariant to influence EPA PK. Determination of EPA's on-target potency, ie, its half-maximal inhibitory concentration (IC50 ) against IDO1, is important for dose selection but complicated by the bioconversion of tryptophan (TRP) to kynurenine (KYN) catalyzed by both IDO1 and TRP 2,3-dioxygenase (TDO). In vitro and ex vivo, the IC50 was estimated following the selective induction of IDO1, rendering the TDO activity relatively insignificant; however, it was desirable to determine the in vivo IC50 without inducing an IDO1 abundance. A mechanistic population PD model was developed based on time-matched EPA, TRP, and KYN plasma concentrations in 44 oncology patients, and EPA in vivo IC50 was estimated to be ∼70 nM, consistent with the ex vivo value independently determined. The model suggests that ∼60% and 40% of TRP→KYN bioconversion was mediated by IDO1 and TDO, respectively, in the cancer patients at baseline. For this study population of limited numbers of subjects, neither age nor sex was a significant covariate for EPA PK or PD.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Modelos Biológicos , Neoplasias/metabolismo , Oximas/farmacología , Oximas/farmacocinética , Sulfonamidas/farmacología , Sulfonamidas/farmacocinética , Adulto , Anciano , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/sangre , Masculino , Persona de Mediana Edad , Neoplasias/sangre , Oximas/sangre , Sulfonamidas/sangre , Triptófano/sangre
4.
Drug Metab Dispos ; 44(10): 1668-74, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27457784

RESUMEN

Epacadostat (EPA, INCB024360) is a first-in-class, orally active, investigational drug targeting the enzyme indoleamine 2,3-dioxygenase 1 (IDO1). In Phase I studies, EPA has demonstrated promising clinical activity when used in combination with checkpoint modulators. When the metabolism of EPA was investigated in humans, three major, IDO1-inactive, circulating plasma metabolites were detected and characterized: M9, a direct O-glucuronide of EPA; M11, an amidine; and M12, N-dealkylated M11. Glucuronidation of EPA to form M9 is the dominant metabolic pathway, and in vitro, this metabolite is formed by UGT1A9. However, negligible quantities of M11 and M12 were detected when EPA was incubated with a panel of human microsomes from multiple tissues, hepatocytes, recombinant human cytochrome P450s (P450s), and non-P450 enzymatic systems. Given the reductive nature of M11 formation and the inability to define its source, the role of gut microbiota was investigated. Analysis of plasma from mice dosed with EPA following pretreatment with either antibiotic (ciprofloxacin) to inhibit gut bacteria or 1-aminobenzotriazole (ABT) to systemically inhibit P450s demonstrated that gut microbiota is responsible for the formation of M11. Incubations of EPA in human feces confirmed the role of gut bacteria in the formation of M11. Further, incubations of M11 with recombinant P450s showed that M12 is formed via N-dealkylation of M11 by CYP3A4, CYP2C19, and CYP1A2. Thus, in humans three major plasma metabolites of EPA were characterized: two primary metabolites, M9 and M11, formed directly from EPA via UGT1A9 and gut microbiota, respectively, and M12 formed as a secondary metabolite via P450s from M11.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Intestinos/microbiología , Microbiota , Oximas/metabolismo , Sulfonamidas/metabolismo , Humanos , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , UDP Glucuronosiltransferasa 1A9
5.
Blood ; 115(17): 3520-30, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20197554

RESUMEN

Indoleamine 2,3-dioxygenase-1 (IDO1; IDO) mediates oxidative cleavage of tryptophan, an amino acid essential for cell proliferation and survival. IDO1 inhibition is proposed to have therapeutic potential in immunodeficiency-associated abnormalities, including cancer. Here, we describe INCB024360, a novel IDO1 inhibitor, and investigate its roles in regulating various immune cells and therapeutic potential as an anticancer agent. In cellular assays, INCB024360 selectively inhibits human IDO1 with IC(50) values of approximately 10nM, demonstrating little activity against other related enzymes such as IDO2 or tryptophan 2,3-dioxygenase (TDO). In coculture systems of human allogeneic lymphocytes with dendritic cells (DCs) or tumor cells, INCB024360 inhibition of IDO1 promotes T and natural killer (NK)-cell growth, increases IFN-gamma production, and reduces conversion to regulatory T (T(reg))-like cells. IDO1 induction triggers DC apoptosis, whereas INCB024360 reverses this and increases the number of CD86(high) DCs, potentially representing a novel mechanism by which IDO1 inhibition activates T cells. Furthermore, IDO1 regulation differs in DCs versus tumor cells. Consistent with its effects in vitro, administration of INCB024360 to tumor-bearing mice significantly inhibits tumor growth in a lymphocyte-dependent manner. Analysis of plasma kynurenine/tryptophan levels in patients with cancer affirms that the IDO pathway is activated in multiple tumor types. Collectively, the data suggest that selective inhibition of IDO1 may represent an attractive cancer therapeutic strategy via up-regulation of cellular immunity.


Asunto(s)
Células Dendríticas/inmunología , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Antígeno B7-2/inmunología , Antígeno B7-2/metabolismo , Técnicas de Cocultivo , Células Dendríticas/enzimología , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Celular/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Linfocitos T/enzimología , Triptófano Oxigenasa/inmunología , Triptófano Oxigenasa/metabolismo
6.
Mol Cancer Ther ; 9(2): 489-98, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20124451

RESUMEN

Malignant tumors arise, in part, because the immune system does not adequately recognize and destroy them. Expression of indoleamine-2,3-dioxygenase (IDO; IDO1), a rate-limiting enzyme in the catabolism of tryptophan into kynurenine, contributes to this immune evasion. Here we describe the effects of systemic IDO inhibition using orally active hydroxyamidine small molecule inhibitors. A single dose of INCB023843 or INCB024360 results in efficient and durable suppression of Ido1 activity in the plasma of treated mice and dogs, the former to levels seen in Ido1-deficient mice. Hydroxyamidines potently suppress tryptophan metabolism in vitro in CT26 colon carcinoma and PAN02 pancreatic carcinoma cells and in vivo in tumors and their draining lymph nodes. Repeated administration of these IDO1 inhibitors impedes tumor growth in a dose- and lymphocyte-dependent fashion and is well tolerated in efficacy and preclinical toxicology studies. Substantiating the fundamental role of tumor cell-derived IDO expression, hydroxyamidines control the growth of IDO-expressing tumors in Ido1-deficient mice. These activities can be attributed, at least partially, to the increased immunoreactivity of lymphocytes found in tumors and their draining lymph nodes and to the reduction in tumor-associated regulatory T cells. INCB024360, a potent IDO1 inhibitor with desirable pharmaceutical properties, is poised to start clinical trials in cancer patients.


Asunto(s)
Amidinas/farmacología , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Neoplasias/metabolismo , Triptófano/metabolismo , Animales , Línea Celular Tumoral , Perros , Femenino , Humanos , Sistema Inmunológico , Inmunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Quinurenina/farmacología , Ganglios Linfáticos/patología , Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/patología
7.
J Med Chem ; 52(23): 7364-7, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19507862

RESUMEN

A hydroxyamidine chemotype has been discovered as a key pharmacophore in novel inhibitors of indoleamine 2,3-dioxygenase (IDO). Optimization led to the identification of 5l, which is a potent (HeLa IC(50) = 19 nM) competitive inhibitor of IDO. Testing of 5l in mice demonstrated pharmacodynamic inhibition of IDO, as measured by decreased kynurenine levels (>50%) in plasma and dose dependent efficacy in mice bearing GM-CSF-secreting B16 melanoma tumors.


Asunto(s)
Unión Competitiva , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Melanoma/enzimología , Amidinas/química , Amidinas/metabolismo , Amidinas/farmacología , Amidinas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Concentración 50 Inhibidora , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Ratones , Modelos Moleculares , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...