Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Electron Mater ; 5(12): 6929-6937, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38162529

RESUMEN

Titanium nitride (TiN) has emerged as a highly promising alternative to traditional plasmonic materials. This study focuses on the inclusion of a Cr90Ru10 buffer layer between the substrate and thin TiN film, which enables the use of cost-effective, amorphous technical substrates while preserving high film quality. We report best-in-class TiN thin films fabricated on fused silica wafers, achieving a maximum plasmonic figure of merit, -ϵ'/ϵ″, of approximately 2.8, even at a modest wafer temperature of around 300 °C. Furthermore, we delve into the characterization of TiN thin film quality and fabricated TiN triangular nanostructures, employing attenuated total reflectance and cathodoluminescence techniques to highlight their potential applications in surface plasmonics.

2.
Nano Lett ; 21(21): 9210-9216, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34699234

RESUMEN

All-optical switching of magnetization has great potential for use in future ultrafast and energy efficient nanoscale magnetic storage devices. So far, research has been almost exclusively focused on rare-earth based materials, which limits device tunability and scalability. Here, we show that a perpendicularly magnetized synthetic ferrimagnet composed of two distinct transition metal ferromagnetic layers, Ni3Pt and Co, can exhibit helicity independent magnetization switching. Switching occurs between two equivalent remanent states with antiparallel alignment of the Ni3Pt and Co magnetic moments and is observable over a broad temperature range. Time-resolved measurements indicate that the switching is driven by a spin-polarized current passing through the subnanometer Ir interlayer. The magnetic properties of this model system may be tuned continuously via subnanoscale changes in the constituent layer thicknesses as well as growth conditions, allowing the underlying mechanisms to be elucidated and paving the way to a new class of data storage devices.

3.
ACS Appl Mater Interfaces ; 12(17): 19866-19873, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32267669

RESUMEN

Confining light in extremely small cavities is crucial in nanophotonics, central to many applications. Employing a unique nanoparticle-on-mirror plasmonic structure and using a graphene film as a spacer, we create nanoscale cavities with volumes of only a few tens of cubic nanometers. The ultracompact cavity produces extremely strong optical near-fields, which facilitate the formation of single carbon quantum dots in the cavity and simultaneously empower the strong coupling between the excitons of the formed carbon quantum dot and the localized surface plasmons. This is manifested in the optical scattering spectra, showing a magnificent Rabi splitting of up to 200 meV under ambient conditions. In addition, we demonstrate that the strong coupling is tuneable with light irradiation. This opens new paradigms for investigating the fundamental light emission properties of carbon quantum dots in the quantum regime and paves the way for many significant applications.

4.
Nanoscale Adv ; 2(7): 2738-2744, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-36132381

RESUMEN

Being able to precisely control the reduction of two-dimensional graphene oxide films will open exciting opportunities for tailor-making the functionality of nanodevices with on-demand properties. Here we report the meticulously controlled reduction of individual graphene oxide flakes ranging from single to seven layers through controlled laser irradiation. It is found that the reduction can be customized in such a precise way that the film thickness can be accurately thinned with sub-nanometer resolution, facilitated by extraordinary temperature gradients >102 K nm-1 across the interlayers of graphene oxide films. Such precisely controlled reduction provides important pathways towards precision nanotechnology with custom-designed electrical, thermal, optical and chemical properties. We demonstrate that this can be exploited to fine tune the work function of graphene oxide films with unprecedented precision of only a few milli electronvolts.

5.
Nanotechnology ; 31(14): 145706, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-31842012

RESUMEN

Extraordinarily high optical contrast is instrumental to research and applications of two-dimensional materials, such as, for rapid identification of thickness, characterisation of optical properties, and quality assessment. With optimal designs of substrate structures and light illumination conditions, unprecedented optical contrast of MoS2 on Au surfaces exceeding 430% for monolayer and over 2600% for bilayer is achieved. This is realised on custom-designed substrates of near-zero reflectance near the normal incidence. In particular, by using an aperture stop to restrict the angle of incidence, high-magnification objectives can be made to achieve extraordinarily high optical contrast in a similar way as the low-magnification objectives, but still retaining the high spatial resolution capability. The technique will allow small flakes of micrometre size to be located easily and identified with great accuracy, which will have significant implications in many applications.

6.
ACS Nano ; 12(10): 10463-10472, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30265515

RESUMEN

Exfoliation of large-area monolayers is important for fundamental research and technological implementation of transition-metal dichalcogenides. Various techniques have been explored to increase the exfoliation yield, but little is known about the underlying mechanism at the atomic level. Here, we demonstrate gold-assisted mechanical exfoliation of monolayer molybdenum disulfide, up to a centimeter scale. Detailed spectroscopic, microscopic, and first-principles density functional theory analyses reveal that strong van der Waals (vdW) interaction between Au and the topmost MoS2 layer facilitates the exfoliation of monolayers. However, the large-area exfoliation promoted by such strong vdW interaction is only achievable on freshly prepared clean and smooth Au surfaces, while rough surfaces and surfaces exposed to air for more than 15 min result in negligible exfoliation yields. This technique is successfully extended to MoSe2, WS2, WSe2, MoTe2, WTe2, and GaSe. In addition, electrochemical characterization reveals intriguing interactions between monolayer MoS2 and Au. A subnanometer-thick MoS2 monolayer strongly passivates the chemical properties of the underlying Au, and the Au significantly modulates the electronic band structure of the MoS2, turning it from semiconducting to metallic. This could find applications in many areas, including electrochemistry, photovoltaics, and photocatalysis.

7.
ACS Appl Mater Interfaces ; 10(26): 22520-22528, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29812895

RESUMEN

The thickness of graphene films can be accurately determined by optical contrast spectroscopy. However, this becomes challenging and complicated when the flake size reduces to the micrometer scale, where the contrast spectrum is sensitively dependent on the polarization and incident angle of light. Here, we report accurate measurement of the optical contrast spectra of micrometer-sized few-layer graphene flakes on Au substrate. Using a high-resolution optical microscopy with a 100× magnification objective, we accurately determined the layer numbers of flakes as small as one micrometer in lateral size. We developed a theoretical model to accurately take into account the appropriate contribution of light incident at various angles and polarizations, which matched the experimental results extremely well. Furthermore, we demonstrate that the optical contrast spectroscopy is highly sensitive to detect the adsorption of submonolayer airborne hydrocarbon molecules, which can reveal whether graphene is contaminated. Though the technique was demonstrated on graphene, it can be readily generalized to many other two-dimensional materials, which opens new avenues for developing miniaturized and ultrasensitive label-free molecular sensors.

8.
Nanotechnology ; 29(27): 275205, 2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-29664413

RESUMEN

Metals have been increasingly used as substrates in devices based on two-dimensional (2D) materials. However, the high reflectivity of bulk metals results in low optical contrast (<3%) and therefore poor visibility of transparent mono- and few-layer 2D materials on these surfaces. Here we demonstrate that by engineering the complex reflectivity of a purpose-designed multilayer heterostructure composed of thin Au films (2-8 nm) on SiO2/Si substrate, the optical contrast of graphene and graphene oxide (GO) can be significantly enhanced in comparison to bulk Au, up to about 3 and 5 times, respectively. In particular, we achieved ∼17% optical contrast for monolayer GO, which is even 2 times higher than that on bare SiO2/Si substrate. The experimental results are in good agreement with theoretical simulations. This concept is demonstrated for Au, but the methodology is applicable to other metals and can be adopted to design a variety of high-contrast metallic substrates. This will facilitate research and applications of 2D materials in areas such as plasmonics, photonics, catalysis and sensors.

9.
Dalton Trans ; 44(25): 11286-9, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26053484

RESUMEN

Temperature-dependent switching of paramagnetism of a cobalt(II) complex is observed in an ionic liquid solution. Paramagnetic and thermochromic switching occur simultaneously due to a reversible change in coordination. This reversible switching is possible in the ionic liquid solution, which enables mobility of thiocyanate anions by remaining mobile at low temperatures and acts as an anion reservoir.

10.
Nanotechnology ; 23(50): 505302, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23183100

RESUMEN

Self-assembled electrodeposited nanorod materials have been shown to offer an exciting landscape for a wide array of research ranging from nanophotonics through to biosensing and magnetics. However, until now, the scope for site-specific preparation of the nanorods on wafers has been limited to local area definition. Further there is little or no lateral control of nanorod height. In this work we present a scalable method for controlling the growth of the nanorods in the vertical direction as well as their lateral position. A focused ion beam pre-patterns the Au cathode layer prior to the creation of the anodized aluminium oxide (AAO) template on top. When the pre-patterning is of the same dimension as the pore spacing of the AAO template, lines of single nanorods are successfully grown. Further, for sub-200 nm wide features, a relationship between the nanorod height and distance from the non-patterned cathode can be seen to follow a quadratic growth rate obeying Faraday's law of electrodeposition. This facilitates lateral control of nanorod height combined with localized growth of the nanorods.

11.
Nano Lett ; 7(5): 1134-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17407362

RESUMEN

We report on the successful fabrication of arrays of switchable nanocapacitors made by harnessing the self-assembly of materials. The structures are composed of arrays of 20-40 nm diameter Pt nanowires, spaced 50-100 nm apart, electrodeposited through nanoporous alumina onto a thin film lower electrode on a silicon wafer. A thin film ferroelectric (both barium titanate (BTO) and lead zirconium titanate (PZT)) has been deposited on top of the nanowire array, followed by the deposition of thin film upper electrodes. The PZT nanocapacitors exhibit hysteresis loops with substantial remnant polarizations, while although the switching performance was inferior, the low-field characteristics of the BTO nanocapacitors show dielectric behavior comparable to conventional thin film heterostructures. While registration is not sufficient for commercial RAM production, this is nevertheless an embryonic form of the highest density hard-wired FRAM capacitor array reported to date and compares favorably with atomic force microscopy read-write densities.

12.
Artículo en Inglés | MEDLINE | ID: mdl-17186902

RESUMEN

A series of experiments has been undertaken to understand more about the fundamental origin of the thickness-induced permittivity collapse often observed in conventional thin film ferroelectric heterostructures. The various experiments are discussed, highlighting the eventual need to examine permittivity collapse in thin film single crystal material. It has been seen that dielectric collapse is not a direct consequence of reduced size, and neither is it a consequence of unavoidable physics associated with the ferroelectric-electrode boundary. Research on three-dimensional shape-constrained ferroelectrics, emphasizing self-assembled structures based on nanoporous alumina templates and on FIB-milled single crystals, is also presented, and appears to represent an exciting area for ongoing research.


Asunto(s)
Electroquímica/métodos , Modelos Químicos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Simulación por Computador , Impedancia Eléctrica , Electroquímica/instrumentación , Campos Electromagnéticos , Ensayo de Materiales , Nanoestructuras/efectos de la radiación , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...