Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetologia ; 62(11): 2129-2142, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31399844

RESUMEN

AIMS/HYPOTHESIS: Long non-coding RNAs (lncRNAs) are garnering increasing attention for their putative roles in the pathogenesis of chronic diseases, including diabetic kidney disease (DKD). However, much about in vivo lncRNA functionality in the adult organism remains unclear. To better understand lncRNA regulation and function in DKD, we explored the effects of the modular scaffold lncRNA HOTAIR (HOX antisense intergenic RNA), which approximates chromatin modifying complexes to their target sites on the genome. METHODS: Experiments were performed in human kidney tissue, in mice with streptozotocin-induced diabetes, the db/db mouse model of type 2 diabetes, podocyte-specific Hotair knockout mice and conditionally immortalised mouse podocytes. RESULTS: HOTAIR was observed to be expressed by several kidney cell-types, including glomerular podocytes, in both human and mouse kidneys. However, knockout of Hotair from podocytes had almost no effect on kidney structure, function or ultrastructure. Glomerular HOTAIR expression was found to be increased in human DKD, in the kidneys of mice with streptozotocin-induced diabetes and in the kidneys of db/db mice. Likewise, exposure of cultured mouse podocytes to high glucose caused upregulation of Hotair expression, which occurred in a p65-dependent manner. Although HOTAIR expression was upregulated in DKD and in high glucose-exposed podocytes, its knockout did not alter the development of kidney damage in diabetic mice. Rather, in a bioinformatic analysis of human kidney tissue, HOTAIR expression closely paralleled the expression of its genic neighbour, HOXC11, which is important to developmental patterning but which has an uncertain role in the adult kidney. CONCLUSIONS/INTERPRETATION: Many lncRNAs have been found to bind to the same chromatin modifying complexes. Thus, there is likely to exist sufficient redundancy in the system that the biological effects of dysregulated lncRNAs in kidney disease may often be inconsequential. The example of the archetypal scaffold lncRNA, HOTAIR, illustrates how lncRNA dysregulation may be a bystander in DKD without necessarily contributing to the pathogenesis of the condition. In the absence of in vivo validation, caution should be taken before ascribing major functional roles to single lncRNAs in the pathogenesis of chronic diseases.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Regulación de la Expresión Génica , ARN Largo no Codificante/metabolismo , Animales , Tipificación del Cuerpo , Cromatina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Hibridación in Situ , Glomérulos Renales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Podocitos/citología , Podocitos/metabolismo , ARN Largo no Codificante/genética
2.
Diabetes ; 67(12): 2668-2681, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213824

RESUMEN

The posttranslational histone modifications that epigenetically affect gene transcription extend beyond conventionally studied methylation and acetylation patterns. By examining the means by which podocytes influence the glomerular endothelial phenotype, we identified a role for phosphorylation of histone H3 on serine residue 10 (phospho-histone H3Ser10) in mediating endothelial activation in diabetes. Culture media conditioned by podocytes exposed to high glucose caused glomerular endothelial vascular cell adhesion protein 1 (VCAM-1) upregulation and was enriched for the chemokine CCL2. A neutralizing anti-CCL2 antibody prevented VCAM-1 upregulation in cultured glomerular endothelial cells, and knockout of the CCL2 receptor CCR2 diminished glomerular VCAM-1 upregulation in diabetic mice. CCL2/CCR2 signaling induced glomerular endothelial VCAM-1 upregulation through a pathway regulated by p38 mitogen-activated protein kinase, mitogen- and stress-activated protein kinases 1/2 (MSK1/2), and phosphorylation of H3Ser10, whereas MSK1/2 inhibition decreased H3Ser10 phosphorylation at the VCAM1 promoter. Finally, increased phospho-histone H3Ser10 levels were observed in the kidneys of diabetic endothelial nitric oxide synthase knockout mice and in the glomeruli of humans with diabetic kidney disease. These findings demonstrate the influence that histone protein phosphorylation may have on gene activation in diabetic kidney disease. Histone protein phosphorylation should be borne in mind when considering epigenetic targets amenable to therapeutic manipulation in diabetes.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Endotelio Vascular/metabolismo , Histonas/metabolismo , Transducción de Señal/fisiología , Animales , Células Endoteliales/metabolismo , Humanos , Glomérulos Renales/metabolismo , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Podocitos/metabolismo , Regiones Promotoras Genéticas , Receptores CCR2/genética , Receptores CCR2/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
3.
Diabetes ; 67(11): 2443-2455, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150305

RESUMEN

Blood glucose-lowering therapies can positively or negatively affect heart function in type 2 diabetes, or they can have neutral effects. Dipeptidyl peptidase 4 (DPP-4) inhibitors lower blood glucose by preventing the proteolytic inactivation of glucagon-like peptide 1 (GLP-1). However, GLP-1 is not the only peptide substrate of DPP-4. Here, we investigated the GLP-1-independent cardiac effects of DPP-4 substrates. Pointing to GLP-1 receptor (GLP-1R)-independent actions, DPP-4 inhibition prevented systolic dysfunction equally in pressure-overloaded wild-type and GLP-1R knockout mice. Likewise, DPP-4 inhibition or the DPP-4 substrates substance P or C-X-C motif chemokine ligand 12 (CXCL12) improved contractile recovery after no-flow ischemia in the hearts of otherwise healthy young adult mice. Either DPP-4 inhibition or CXCL12 increased phosphorylation of the Ca2+ regulatory protein phospholamban (PLN), and CXCL12 directly enhanced cardiomyocyte Ca2+ flux. In contrast, hearts of aged obese diabetic mice (which may better mimic the comorbid patient population) had diminished levels of PLN phosphorylation. In this setting, CXCL12 paradoxically impaired cardiac contractility in a phosphoinositide 3-kinase γ-dependent manner. These findings indicate that the cardiac effects of DPP-4 inhibition primarily occur through GLP-1R-independent processes and that ostensibly beneficial DPP-4 substrates can paradoxically worsen heart function in the presence of comorbid diabetes.


Asunto(s)
Calcio/metabolismo , Quimiocina CXCL12/metabolismo , Diabetes Mellitus/metabolismo , Corazón/fisiopatología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Quimiocina CXCL12/genética , Diabetes Mellitus/fisiopatología , Dieta Alta en Grasa , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones , Ratones Noqueados , Fosforilación
4.
Front Pharmacol ; 9: 34, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29449811

RESUMEN

To contend with the deleterious effects of accumulating misfolded protein aggregates or damaged organelles cells rely on a system of quality control processes, among them the autophagy-lysosome pathway. This pathway is itself controlled by a master regulator transcription factor termed transcription factor EB (TFEB). When TFEB localizes to the cell nucleus it promotes the expression of a number of genes involved in protein clearance. Here, we set out to determine (1) whether TFEB expression is altered in chronic kidney disease (CKD); (2) whether inhibition of the cytosolic deacetylase histone deacetylase 6 (HDAC6) affects TFEB acetylation and nuclear localization; and (3) whether HDAC6 inhibition, in turn, alters the natural history of experimental CKD. TFEB mRNA and protein levels were observed to be diminished in the kidneys of humans with diabetic kidney disease, accompanied by accumulation of the protein aggregate adaptor protein p62 in tubule epithelial cells. In cultured NRK-52E cells, HDAC6 inhibition with the small molecule inhibitor Tubastatin A acetylated TFEB, increasing TFEB localization to the nucleus and attenuating cell death. In a rat model of CKD, Tubastatin A prevented the accumulation of misfolded protein aggregates in tubule epithelial cells, attenuated proteinuria progression, limited tubule cell death and diminished tubulointerstitial collagenous matrix deposition. These findings point to the common occurrence of dysregulated quality control processes in CKD and they suggest that TFEB downregulation may contribute to tubule injury in CKD. They also identify a regulatory relationship between HDAC6 and TFEB. HDAC6 inhibitors and TFEB activators both warrant further investigation as treatments for CKD.

5.
J Clin Invest ; 128(1): 483-499, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29227285

RESUMEN

Histone protein modifications control fate determination during normal development and dedifferentiation during disease. Here, we set out to determine the extent to which dynamic changes to histones affect the differentiated phenotype of ordinarily quiescent adult glomerular podocytes. To do this, we examined the consequences of shifting the balance of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark in podocytes. Adriamycin nephrotoxicity and subtotal nephrectomy (SNx) studies indicated that deletion of the histone methylating enzyme EZH2 from podocytes decreased H3K27me3 levels and sensitized mice to glomerular disease. H3K27me3 was enriched at the promoter region of the Notch ligand Jag1 in podocytes, and derepression of Jag1 by EZH2 inhibition or knockdown facilitated podocyte dedifferentiation. Conversely, inhibition of the Jumonji C domain-containing demethylases Jmjd3 and UTX increased the H3K27me3 content of podocytes and attenuated glomerular disease in adriamycin nephrotoxicity, SNx, and diabetes. Podocytes in glomeruli from humans with focal segmental glomerulosclerosis or diabetic nephropathy exhibited diminished H3K27me3 and heightened UTX content. Analogous to human disease, inhibition of Jmjd3 and UTX abated nephropathy progression in mice with established glomerular injury and reduced H3K27me3 levels. Together, these findings indicate that ostensibly stable chromatin modifications can be dynamically regulated in quiescent cells and that epigenetic reprogramming can improve outcomes in glomerular disease by repressing the reactivation of developmental pathways.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Histonas/metabolismo , Podocitos/metabolismo , Animales , Nefropatías Diabéticas/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Histona Demetilasas/metabolismo , Humanos , Proteína Jagged-1/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Metilación , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteínas Nucleares/metabolismo , Podocitos/patología
6.
Am J Physiol Renal Physiol ; 314(3): F412-F422, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29141939

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is an important cause of nondiabetic chronic kidney disease (CKD). Sodium-glucose cotransporter 2 inhibition (SGLT2i) therapy attenuates the progression of diabetic nephropathy, but it remains unclear whether SGLT2i provides renoprotection in nondiabetic CKD such as FSGS. The primary aim of this pilot study was to determine the effect of 8 wk of dapagliflozin on glomerular filtration rate (GFR) in humans and in experimental FSGS. Secondary end points were related to changes in renal hemodynamic function, proteinuria, and blood pressure (BP). GFR (inulin) and renal plasma flow (para-aminohippurate), proteinuria, and BP were measured in patients with FSGS ( n = 10), and similar parameters were measured in subtotally nephrectomized (SNx) rats. In response to dapagliflozin, changes in GFR, renal plasma flow, and 24-h urine protein excretion were not statistically significant in humans or rats. Systolic BP (SBP) decreased in SNx rats (196 ± 26 vs. 165 ± 33 mmHg; P < 0.001), whereas changes were not statistically significant in humans (SBP 112.7 ± 8.5 to 112.8 ± 11.2 mmHg, diastolic BP 71.8 ± 6.5 to 69.6 ± 8.4 mmHg; P = not significant), although hematocrit increased (0.40 ± 0.05 to 0.42 ± 0.05%; P = 0.03). In archival kidney tissue from a separate patient cohort, renal parenchymal SGLT2 mRNA expression was decreased in individuals with FSGS compared with controls. Short-term treatment with the SGLT2i dapagliflozin did not modify renal hemodynamic function or attenuate proteinuria in humans or in experimental FSGS. This may be related to downregulation of renal SGLT2 expression. Studies examining the impact of SGLT2i on markers of kidney disease in patients with other causes of nondiabetic CKD are needed.


Asunto(s)
Arteriolas/efectos de los fármacos , Compuestos de Bencidrilo/uso terapéutico , Tasa de Filtración Glomerular/efectos de los fármacos , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glucósidos/uso terapéutico , Riñón/irrigación sanguínea , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Vasoconstricción/efectos de los fármacos , Adulto , Animales , Arteriolas/metabolismo , Arteriolas/fisiopatología , Modelos Animales de Enfermedad , Femenino , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Prueba de Estudio Conceptual , Proteinuria/tratamiento farmacológico , Proteinuria/metabolismo , Proteinuria/fisiopatología , Ratas Sprague-Dawley , Transportador 2 de Sodio-Glucosa/genética , Transportador 2 de Sodio-Glucosa/metabolismo , Factores de Tiempo , Resultado del Tratamiento
7.
Sci Rep ; 7(1): 3442, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28611444

RESUMEN

The therapeutic targeting of prostanoid subtype receptors may slow the development of chronic kidney disease (CKD) through mechanisms that are distinct from those of upstream COX inhibition. Here, employing multiple experimental models of CKD, we studied the effects of inhibition of the EP4 receptor, one of four receptor subtypes for the prostanoid prostaglandin E2. In streptozotocin-diabetic endothelial nitric oxide synthase knockout mice, EP4 inhibition attenuated the development of albuminuria, whereas the COX inhibitor indomethacin did not. In Type 2 diabetic db/db mice, EP4 inhibition lowered albuminuria to a level comparable with that of the ACE inhibitor captopril. However, unlike captopril, EP4 inhibition had no effect on blood pressure or hyperfiltration although it did attenuate mesangial matrix accumulation. Indicating a glucose-independent mechanism of action, EP4 inhibition also attenuated proteinuria development and glomerular scarring in non-diabetic rats subjected to surgical renal mass ablation. Finally, in vitro, EP4 inhibition prevented transforming growth factor-ß1 induced dedifferentiation of glomerular podocytes. In rodent models of diabetic and non-diabetic CKD, EP4 inhibition attenuated renal injury through mechanisms that were distinct from either broadspectrum COX inhibition or "standard of care" renin angiotensin system blockade. EP4 inhibition may represent a viable repurposing opportunity for the treatment of CKD.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Naftalenos/farmacología , Fenilbutiratos/farmacología , Subtipo EP4 de Receptores de Prostaglandina E/antagonistas & inhibidores , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Naftalenos/uso terapéutico , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenilbutiratos/uso terapéutico , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/metabolismo
8.
J Am Soc Nephrol ; 28(9): 2641-2653, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28424277

RESUMEN

The nonreceptor kinase Janus kinase 2 (JAK2) has garnered attention as a promising therapeutic target for the treatment of CKD. However, being ubiquitously expressed in the adult, JAK2 is also likely to be necessary for normal organ function. Here, we investigated the phenotypic effects of JAK2 deficiency. Mice in which JAK2 had been deleted from podocytes exhibited an elevation in urine albumin excretion that was accompanied by increased podocyte autophagosome fractional volume and p62 aggregation, which are indicative of impaired autophagy completion. In cultured podocytes, knockdown of JAK2 similarly impaired autophagy and led to downregulation in the expression of lysosomal genes and decreased activity of the lysosomal enzyme, cathepsin D. Because transcription factor EB (TFEB) has recently emerged as a master regulator of autophagosome-lysosome function, controlling the expression of several of the genes downregulated by JAK2 knockdown, we questioned whether TFEB is regulated by JAK2. In immortalized mouse podocytes, JAK2 knockdown decreased TFEB promoter activity, expression, and nuclear localization. In silico analysis and chromatin immunoprecipitation assays revealed that the downstream mediator of JAK2 signaling STAT1 binds to the TFEB promoter. Finally, overexpression of TFEB in JAK2-deficient podocytes reversed lysosomal dysfunction and restored albumin permselectivity. Collectively, these observations highlight the homeostatic actions of JAK2 in podocytes and the importance of TFEB to autophagosome-lysosome function in these cells. These results also raise the possibility that therapeutically modulating TFEB activity may improve podocyte health in glomerular disease.


Asunto(s)
Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Janus Quinasa 2/genética , Podocitos/metabolismo , Albuminuria/genética , Animales , Autofagosomas/ultraestructura , Catepsina D/metabolismo , Células Cultivadas , Simulación por Computador , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Janus Quinasa 2/deficiencia , Janus Quinasa 2/metabolismo , Glomérulos Renales/citología , Lisosomas/ultraestructura , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Péptidos/metabolismo , Fenotipo , Podocitos/ultraestructura , ARN Mensajero/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
9.
Diabetes ; 65(5): 1398-409, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26868296

RESUMEN

Discovery of common pathways that mediate both pancreatic ß-cell function and end-organ function offers the opportunity to develop therapies that modulate glucose homeostasis and separately slow the development of diabetes complications. Here, we investigated the in vitro and in vivo effects of pharmacological agonism of the prostaglandin I2 (IP) receptor in pancreatic ß-cells and in glomerular podocytes. The IP receptor agonist MRE-269 increased intracellular 3',5'-cyclic adenosine monophosphate (cAMP), augmented glucose-stimulated insulin secretion (GSIS), and increased viability in MIN6 ß-cells. Its prodrug form, selexipag, augmented GSIS and preserved islet ß-cell mass in diabetic mice. Determining that this preservation of ß-cell function is mediated through cAMP/protein kinase A (PKA)/nephrin-dependent pathways, we found that PKA inhibition, nephrin knockdown, or targeted mutation of phosphorylated nephrin tyrosine residues 1176 and 1193 abrogated the actions of MRE-269 in MIN6 cells. Because nephrin is important to glomerular permselectivity, we next set out to determine whether IP receptor agonism similarly affects nephrin phosphorylation in podocytes. Expression of the IP receptor in podocytes was confirmed in cultured cells by immunoblotting and quantitative real-time PCR and in mouse kidneys by immunogold electron microscopy, and its agonism 1) increased cAMP, 2) activated PKA, 3) phosphorylated nephrin, and 4) attenuated albumin transcytosis. Finally, treatment of diabetic endothelial nitric oxide synthase knockout mice with selexipag augmented renal nephrin phosphorylation and attenuated albuminuria development independently of glucose change. Collectively, these observations describe a pharmacological strategy that posttranslationally modifies nephrin and the effects of this strategy in the pancreas and in the kidney.


Asunto(s)
Nefropatías Diabéticas/prevención & control , Células Secretoras de Insulina/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Podocitos/efectos de los fármacos , Receptores de Epoprostenol/agonistas , Acetamidas/uso terapéutico , Acetatos/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina/agonistas , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fosforilación/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Podocitos/ultraestructura , Profármacos/uso terapéutico , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Pirazinas/farmacología , Pirazinas/uso terapéutico , Interferencia de ARN , Receptores de Epoprostenol/genética , Receptores de Epoprostenol/metabolismo , Insuficiencia Renal/complicaciones , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Insuficiencia Renal/prevención & control
10.
J Am Soc Nephrol ; 27(7): 2021-34, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26534922

RESUMEN

Epigenetic regulation of oxidative stress is emerging as a critical mediator of diabetic nephropathy. In diabetes, oxidative damage occurs when there is an imbalance between reactive oxygen species generation and enzymatic antioxidant repair. Here, we investigated the function of the histone methyltransferase enzyme enhancer of zeste homolog 2 (EZH2) in attenuating oxidative injury in podocytes, focusing on its regulation of the endogenous antioxidant inhibitor thioredoxin interacting protein (TxnIP). Pharmacologic or genetic depletion of EZH2 augmented TxnIP expression and oxidative stress in podocytes cultured under high-glucose conditions. Conversely, EZH2 upregulation through inhibition of its regulatory microRNA, microRNA-101, downregulated TxnIP and attenuated oxidative stress. In diabetic rats, depletion of EZH2 decreased histone 3 lysine 27 trimethylation (H3K27me3), increased glomerular TxnIP expression, induced podocyte injury, and augmented oxidative stress and proteinuria. Chromatin immunoprecipitation sequencing revealed H3K27me3 enrichment at the promoter of the transcription factor Pax6, which was upregulated on EZH2 depletion and bound to the TxnIP promoter, controlling expression of its gene product. In high glucose-exposed podocytes and the kidneys of diabetic rats, the lower EZH2 expression detected coincided with upregulation of Pax6 and TxnIP. Finally, in a gene expression array, TxnIP was among seven of 30,854 genes upregulated by high glucose, EZH2 depletion, and the combination thereof. Thus, EZH2 represses the transcription factor Pax6, which controls expression of the antioxidant inhibitor TxnIP, and in diabetes, downregulation of EZH2 promotes oxidative stress. These findings expand the extent to which epigenetic processes affect the diabetic kidney to include antioxidant repair.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Estrés Oxidativo , Podocitos/metabolismo , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
11.
Clin Invest Med ; 37(3): E172, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24895991

RESUMEN

PURPOSE: Heart failure with preserved ejection fraction (HFpEF) is a common comorbidity in people with chronic kidney disease (CKD) for which no evidence-based treatment currently exists. Recently, a group of anti-hyperglycemic agents used in the treatment of Type 2 diabetes, termed incretin-based therapies, have come under scrutiny for their putative glucose-independent effects on cardiac function. In the present study, the actions of the dipeptidyl peptidase-4 (DPP-4) inhibitor class of incretin-based therapy in preventing HFpEF induced by chronic renal impairment were investigated. METHODS: Sham-operated and subtotally-nephrectomized rats were randomized to receive the DPP-4 inhibitors, linagliptin or sitagliptin for seven weeks before assessment of cardiac and renal structure and function. RESULTS: Analysis of pressure-volume loops revealed that both linagliptin and sitagliptin prevented the development of cardiac diastolic dysfunction, with cardiac collagen I synthesis also being reduced by DPP-4 inhibition. These attenuating cardiac effects occurred without change in renal function or structure where, in the doses administered, neither linagliptin nor sitagliptin affected GFR decline, proteinuria, renal fibrosis or the increased urinary excretion of biomarkers of renal toxicity. CONCLUSION: The beneficial cardiac effects of DPP-4 inhibition, in the absence of a concurrent improvement in renal dysfunction, raise the possibility that these agents may confer cardiovascular advantages in the CKD population.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Función Ventricular Izquierda/efectos de los fármacos , Animales , Femenino , Masculino , Ratas Wistar , Insuficiencia Renal Crónica/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA