Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 23(3): 891-904, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377575

RESUMEN

Quickly identifying and characterizing isolates from extreme environments is currently challenging while very important to explore the Earth's biodiversity. As these isolates may, in principle, be distantly related to known species, techniques are needed to reliably identify the branch of life to which they belong. Proteotyping these environmental isolates by tandem mass spectrometry offers a rapid and cost-effective option for their identification using their peptide profiles. In this study, we document the first high-throughput proteotyping approach for environmental extremophilic and halophilic isolates. Microorganisms were isolated from samples originating from high-altitude Andean lakes (3700-4300 m a.s.l.) in the Chilean Altiplano, which represent environments on Earth that resemble conditions on other planets. A total of 66 microorganisms were cultivated and identified by proteotyping and 16S rRNA gene amplicon sequencing. Both the approaches revealed the same genus identification for all isolates except for three isolates possibly representing not yet taxonomically characterized organisms based on their peptidomes. Proteotyping was able to indicate the presence of two potentially new genera from the families of Paracoccaceae and Chromatiaceae/Alteromonadaceae, which have been overlooked by 16S rRNA amplicon sequencing approach only. The paper highlights that proteotyping has the potential to discover undescribed microorganisms from extreme environments.


Asunto(s)
Extremófilos , Lagos , Altitud , ARN Ribosómico 16S/genética , Biodiversidad
2.
Front Microbiol ; 14: 1118747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434717

RESUMEN

Introduction: Eukaryotic algae in the top few centimeters of fellfield soils of ice-free Maritime Antarctica have many important effects on their habitat, such as being significant drivers of organic matter input into the soils and reducing the impact of wind erosion by soil aggregate formation. To better understand the diversity and distribution of Antarctic terrestrial algae, we performed a pilot study on the surface soils of Meseta, an ice-free plateau mountain crest of Fildes Peninsula, King George Island, being hardly influenced by the marine realm and anthropogenic disturbances. It is openly exposed to microbial colonization from outside Antarctica and connected to the much harsher and dryer ice-free zones of the continental Antarctic. A temperate reference site under mild land use, SchF, was included to further test for the Meseta algae distribution in a contrasting environment. Methods: We employed a paired-end metabarcoding analysis based on amplicons of the highly variable nuclear-encoded ITS2 rDNA region, complemented by a clone library approach. It targeted the four algal classes, Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Xanthophyceae, representing key groups of cold-adapted soil algae. Results: A surprisingly high diversity of 830 algal OTUs was revealed, assigned to 58 genera in the four targeted algal classes. Members of the green algal class Trebouxiophyceae predominated in the soil algae communities. The major part of the algal biodiversity, 86.1% of all algal OTUs, could not be identified at the species level due to insufficient representation in reference sequence databases. The classes Ulvophyceae and Xanthophyceae exhibited the most unknown species diversity. About 9% of the Meseta algae species diversity was shared with that of the temperate reference site in Germany. Discussion: In the small portion of algal OTUs for which their distribution could be assessed, the entire ITS2 sequence identity with references shows that the soil algae likely have a wide distribution beyond the Polar regions. They probably originated from soil algae propagule banks in far southern regions, transported by aeolian transport over long distances. The dynamics and severity of environmental conditions at the soil surface, determined by high wind currents, and the soil algae's high adaptability to harsh environmental conditions may account for the high similarity of soil algal communities between the northern and southern parts of the Meseta.

3.
Front Fungal Biol ; 3: 907563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37746230

RESUMEN

Phosphorus (P) bioavailability affects plant nutrition. P can be present in soils in different chemical forms that are not available for direct plant uptake and have to be acquired by different mechanisms, representing different resource niches. These mechanisms, of which many seem to be attributed to mycorrhiza, likely influence the diversity and stability of plant communities in natural ecosystems, as they also might help to overcome a future shortage of P supply in agro-ecosystems. In order to understand the mechanisms of P acquisition, the associated carbon costs, and the resource partitioning by mycorrhizal fungi, the ecosystem situation has to be mimicked in smaller scaled experiments. Here, different experimental setups are evaluated using plantlets of Populus x canescens and its functional ectomycorrhizal (ECM) fungus Paxillus involututs strain MAJ. To investigate resource partitioning involving mycorrhizae, the protocols of this study describe preparation of an in vitro and a rhizotrone culture systems for studies under axenic conditions as well as a mesocosm culture system for greenhouse conditions. We also describe the construction of separate compartments containing nutrients and excluding plant roots as well as the progress that has been made in in vitro propagation of plant and ECM fungal material. The practical experience made in our study shows that the in vitro culture system is prone to desiccation and its construction and maintenance are more time consuming and complicated. In contrast, with the axenic rhizotrone culture system and the mesocosms we have created more robust and very versatile systems that are also suitable for greenhouse conditions.

4.
Front Plant Sci ; 12: 661842, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335645

RESUMEN

Most plants living in tropical acid soils depend on the arbuscular mycorrhizal (AM) symbiosis for mobilizing low-accessible phosphorus (P), due to its strong bonding by iron (Fe) oxides. The roots release low-molecular-weight organic acids (LMWOAs) as a mechanism to increase soil P availability by ligand exchange or dissolution. However, little is known on the LMWOA production by AM fungi (AMF), since most studies conducted on AM plants do not discriminate on the LMWOA origin. This study aimed to determine whether AMF release significant amounts of LMWOAs to liberate P bound to Fe oxides, which is otherwise unavailable for the plant. Solanum lycopersicum L. plants mycorrhized with Rhizophagus irregularis were placed in a bicompartmental mesocosm, with P sources only accessible by AMF. Fingerprinting of LMWOAs in compartments containing free and goethite-bound orthophosphate (OP or GOE-OP) and phytic acid (PA or GOE-PA) was done. To assess P mobilization via AM symbiosis, P content, photosynthesis, and the degree of mycorrhization were determined in the plant; whereas, AM hyphae abundance was determined using lipid biomarkers. The results showing a higher shoot P content, along with a lower N:P ratio and a higher photosynthetic capacity, may be indicative of a higher photosynthetic P-use efficiency, when AM plants mobilized P from less-accessible sources. The presence of mono-, di-, and tricarboxylic LMWOAs in compartments containing OP or GOE-OP and phytic acid (PA or GOE-PA) points toward the occurrence of reductive dissolution and ligand exchange/dissolution reactions. Furthermore, hyphae grown in goethite loaded with OP and PA exhibited an increased content of unsaturated lipids, pointing to an increased membrane fluidity in order to maintain optimal hyphal functionality and facilitate the incorporation of P. Our results underpin the centrality of AM symbiosis in soil biogeochemical processes, by highlighting the ability of the AMF and accompanying microbiota in releasing significant amounts of LMWOAs to mobilize P bound to Fe oxides.

5.
Front Fungal Biol ; 2: 735299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744156

RESUMEN

Most terrestrial plants establish symbiotic associations with mycorrhizal fungi for accessing essential plant nutrients. Mycorrhizal fungi have been frequently reported to interconnect plants via a common mycelial network (CMN), in which nutrients and signaling compounds can be exchanged between the connected plants. Several studies have been performed to demonstrate the potential effects of the CMN mediating resource transfer and its importance for plant fitness. Due to several contrasting results, different theories have been developed to predict benefits or disadvantages for host plants involved in the network and how it might affect plant communities. However, the importance of the mycelium connections for resources translocation compared to other indirect pathways, such as leakage of fungi hyphae and subsequent uptake by neighboring plant roots, is hard to distinguish and quantify. If resources can be translocated via mycelial connections in significant amounts that could affect plant fitness, it would represent an important tactic for plants co-existence and it could shape community composition and dynamics. Here, we report and critically discuss the most recent findings on studies aiming to evaluate and quantify resources translocation between plants sharing a CMN and predict the pattern that drives the movement of such resources into the CMN. We aim to point gaps and define open questions to guide upcoming studies in the area for a prospect better understanding of possible plant-to-plant interactions via CMN and its effect in shaping plants communities. We also propose new experiment set-ups and technologies that could be used to improve previous experiments. For example, the use of mutant lines plants with manipulation of genes involved in the symbiotic associations, coupled with labeling techniques to track resources translocation between connected plants, could provide a more accurate idea about resource allocation and plant physiological responses that are truly accountable to CMN.

6.
Sci Rep ; 10(1): 4734, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32152384

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Sci Rep ; 9(1): 11531, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395933

RESUMEN

The potential of a plant species to acquire nutrients depends on its ability to explore the soil by its root system. Co-cultivation of different species is anticipated to lead to vertical root niche differentiation and thus to higher soil nutrient depletion. Using a qPCR-based method we quantified root biomass distribution of four catch crop species in vertical soil profiles in pure vs. mixed stands. Pure stands of mustard and phacelia robustly reached 70 cm soil depth, while oat preferably colonized upper soil layers, and clover developed the shallowest and smallest root system. Analysis of residual nitrate pools in different soil depths and correlation with root biomass showed that, besides rooting depth also root biomass determines soil nitrogen depletion. While occupying the same vertical niches as in pure stands, mustard and phacelia dominated total root biomass of the mix. In contrast, root biomass of clover and oat was severely suppressed in presence of the other species. Below-ground biomass profiling indicated low niche complementarity among the root systems of the examined species. Nonetheless, the mixture mostly overyielded root biomass of the pure stands and thus shows higher potential for efficient soil exploration by roots.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Ecosistema , Raíces de Plantas/crecimiento & desarrollo , Suelo/química , Biomasa , Nitratos/metabolismo , Nitrógeno/metabolismo , Árboles/crecimiento & desarrollo
8.
Isotopes Environ Health Stud ; 54(6): 608-621, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30156882

RESUMEN

In the last decades a drastic increase in air temperature but a stable precipitation regime in Mongolia has led to gradual drying conditions. Thus, we evaluated the effect of spatial and climatic characteristics on the soil-plant nitrogen dynamics in three representative larch stands (Larix sibirica) with different geographical and climatic conditions using stable nitrogen isotopes. The results showed significant differences in the soil inorganic N content among sites and consequently a different isotopic composition in the plant-soil system. Litter, bark and wood had the lowest δ15N values for all sites, slightly higher δ15N values for needles, while the highest δ15N values were observed for roots and soil. These differences could be the result of the larch stands age themselves, but were in agreement with the spatial and climatic characteristics of the sites. Based on the δ15N value a higher reliance on ectomycorrhizal fungi (ECMF) was observed in the warmest and driest site, while lower dependency was shown in the cooler northern site with higher soil inorganic N content. In both sites, the rate of air temperature increase has been similar in the last decades; however, their soil-plant N dynamics showed different characteristics.


Asunto(s)
Larix/química , Isótopos de Nitrógeno/análisis , Suelo/química , Taiga , Carbono/análisis , Clima , Larix/microbiología , Mongolia , Micorrizas , Nitrógeno/análisis , Nitrógeno/metabolismo , Raíces de Plantas/química , Madera/química
9.
Ecol Evol ; 6(14): 5043-56, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27547332

RESUMEN

Mangroves play an important role in carbon sequestration, but soil organic carbon (SOC) stocks differ between marine and estuarine mangroves, suggesting differing processes and drivers of SOC accumulation. Here, we compared undegraded and degraded marine and estuarine mangroves in a regional approach across the Indonesian archipelago for their SOC stocks and evaluated possible drivers imposed by nutrient limitations along the land-to-sea gradients. SOC stocks in natural marine mangroves (271-572 Mg ha(-1) m(-1)) were much higher than under estuarine mangroves (100-315 Mg ha(-1) m(-1)) with a further decrease caused by degradation to 80-132 Mg ha(-1) m(-1). Soils differed in C/N ratio (marine: 29-64; estuarine: 9-28), δ (15)N (marine: -0.6 to 0.7‰; estuarine: 2.5 to 7.2‰), and plant-available P (marine: 2.3-6.3 mg kg(-1); estuarine: 0.16-1.8 mg kg(-1)). We found N and P supply of sea-oriented mangroves primarily met by dominating symbiotic N2 fixation from air and P import from sea, while mangroves on the landward gradient increasingly covered their demand in N and P from allochthonous sources and SOM recycling. Pioneer plants favored by degradation further increased nutrient recycling from soil resulting in smaller SOC stocks in the topsoil. These processes explained the differences in SOC stocks along the land-to-sea gradient in each mangrove type as well as the SOC stock differences observed between estuarine and marine mangrove ecosystems. This first large-scale evaluation of drivers of SOC stocks under mangroves thus suggests a continuum in mangrove functioning across scales and ecotypes and additionally provides viable proxies for carbon stock estimations in PES or REDD schemes.

10.
PLoS One ; 7(9): e45540, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049813

RESUMEN

BACKGROUND: Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO(2) efflux is crucial for addressing the carbon footprint of creeping degradation. METHODOLOGY: We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (13)CO(2) pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO(2). Further, we quantified the overall losses of assimilated (13)C with soil CO(2) efflux. PRINCIPAL FINDINGS: (13)C in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO(2) efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO(2) efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. CONCLUSIONS: Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e.g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Cycadopsida/metabolismo , Magnoliopsida/metabolismo , Micorrizas/metabolismo , Floema/metabolismo , Hojas de la Planta/metabolismo , Árboles/metabolismo , Carbono/análisis , Ciclo del Carbono , Dióxido de Carbono/análisis , Isótopos de Carbono , Cycadopsida/química , Etiopía , Magnoliopsida/química , Micorrizas/química , Floema/química , Fotosíntesis/fisiología , Hojas de la Planta/química , Suelo/química , Especificidad de la Especie , Árboles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...