Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Methods ; 20(8): 1232-1236, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37386188

RESUMEN

Phylogenetic models of molecular evolution are central to numerous biological applications spanning diverse timescales, from hundreds of millions of years involving orthologous proteins to just tens of days relating to single cells within an organism. A fundamental problem in these applications is estimating model parameters, for which maximum likelihood estimation is typically employed. Unfortunately, maximum likelihood estimation is a computationally expensive task, in some cases prohibitively so. To address this challenge, we here introduce CherryML, a broadly applicable method that achieves several orders of magnitude speedup by using a quantized composite likelihood over cherries in the trees. The massive speedup offered by our method should enable researchers to consider more complex and biologically realistic models than previously possible. Here we demonstrate CherryML's utility by applying it to estimate a general 400 × 400 rate matrix for residue-residue coevolution at contact sites in three-dimensional protein structures; we estimate that using current state-of-the-art methods such as the expectation-maximization algorithm for the same task would take >100,000 times longer.


Asunto(s)
Evolución Molecular , Proteínas , Filogenia , Funciones de Verosimilitud , Algoritmos , Modelos Genéticos
2.
Mol Syst Biol ; 19(6): e11517, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37154091

RESUMEN

Recent advances in multiplexed single-cell transcriptomics experiments facilitate the high-throughput study of drug and genetic perturbations. However, an exhaustive exploration of the combinatorial perturbation space is experimentally unfeasible. Therefore, computational methods are needed to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation autoencoder (CPA), which combines the interpretability of linear models with the flexibility of deep-learning approaches for single-cell response modeling. CPA learns to in silico predict transcriptional perturbation response at the single-cell level for unseen dosages, cell types, time points, and species. Using newly generated single-cell drug combination data, we validate that CPA can predict unseen drug combinations while outperforming baseline models. Additionally, the architecture's modularity enables incorporating the chemical representation of the drugs, allowing the prediction of cellular response to completely unseen drugs. Furthermore, CPA is also applicable to genetic combinatorial screens. We demonstrate this by imputing in silico 5,329 missing combinations (97.6% of all possibilities) in a single-cell Perturb-seq experiment with diverse genetic interactions. We envision CPA will facilitate efficient experimental design and hypothesis generation by enabling in silico response prediction at the single-cell level and thus accelerate therapeutic applications using single-cell technologies.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Análisis de Expresión Génica de una Sola Célula
3.
Proc Natl Acad Sci U S A ; 120(21): e2209124120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192164

RESUMEN

Detecting differentially expressed genes is important for characterizing subpopulations of cells. In scRNA-seq data, however, nuisance variation due to technical factors like sequencing depth and RNA capture efficiency obscures the underlying biological signal. Deep generative models have been extensively applied to scRNA-seq data, with a special focus on embedding cells into a low-dimensional latent space and correcting for batch effects. However, little attention has been paid to the problem of utilizing the uncertainty from the deep generative model for differential expression (DE). Furthermore, the existing approaches do not allow for controlling for effect size or the false discovery rate (FDR). Here, we present lvm-DE, a generic Bayesian approach for performing DE predictions from a fitted deep generative model, while controlling the FDR. We apply the lvm-DE framework to scVI and scSphere, two deep generative models. The resulting approaches outperform state-of-the-art methods at estimating the log fold change in gene expression levels as well as detecting differentially expressed genes between subpopulations of cells.


Asunto(s)
ARN , Análisis de la Célula Individual , Teorema de Bayes , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos
4.
Nat Biotechnol ; 40(9): 1360-1369, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35449415

RESUMEN

Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ).


Asunto(s)
Neoplasias , Transcriptoma , Animales , Perfilación de la Expresión Génica/métodos , Ratones , Neoplasias/genética , Análisis de la Célula Individual/métodos , Programas Informáticos , Transcriptoma/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...