Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Food Microbiol ; 418: 110712, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38723541

RESUMEN

Different Savoyard cheeses are granted with PDO (Protected Designation or Origin) and PGI (Protected Geographical Indication) which guarantees consumers compliance with strict specifications. The use of raw milk is known to be crucial for specific flavor development. To unravel the factors influencing microbial ecosystems across cheese making steps, according to the seasonality (winter and summer) and the mode of production (farmhouse and dairy factory ones), gene targeting on bacteria and fungus was used to have a full picture of 3 cheese making technologies, from the raw milk to the end of the ripening. Our results revealed that Savoyard raw milks are a plenteous source of biodiversity together with the brines used during the process, that may support the development of specific features for each cheese. It was shown that rinds and curds have very contrasted ecosystem diversity, composition, and evolution. Ripening stage was selective for some bacterial species, whereas fungus were mainly ubiquitous in dairy samples. All ripening stages are impacted by the type of cheese technologies, with a higher impact on bacterial communities, except for fungal rind communities, for which the technology is the more discriminant. The specific microorganism's abundance for each technology allow to see a real bar-code, with more or less differences regarding bacterial or fungal communities. Bacterial structuration is shaped mainly by matrices, differently regarding technologies while the influence of technology is higher for fungi. Production types showed 10 differential bacterial species, farmhouses showed more ripening taxa, while dairy factory products showing more lactic acid bacteria. Meanwhile, seasonality looks to be a minor element for the comprehension of both microbial ecosystems, but the uniqueness of each dairy plant is a key explicative feature, more for bacteria than for fungus communities.

2.
Environ Pollut ; 349: 123954, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604307

RESUMEN

Agricultural run-off in Australia's Mackay-Whitsunday region is a major source of nutrient and pesticide pollution to coastal and inshore ecosystems of the Great Barrier Reef. While the effects of run-off are well documented for the region's coral and seagrass habitats, the ecological impacts on estuaries, the direct recipients of run-off, are less known. This is particularly true for fish communities, which are shaped by the physico-chemical properties of coastal waterways that vary greatly in tropical regions. To address this knowledge gap, we used environmental DNA (eDNA) metabarcoding to examine fish assemblages at four locations (three estuaries and a harbour) subjected to varying levels of agricultural run-off during a wet and dry season. Pesticide and nutrient concentrations were markedly elevated during the sampled wet season with the influx of freshwater and agricultural run-off. Fish taxa richness significantly decreased in all three estuaries (F = 164.73, P = <0.001), along with pronounced changes in community composition (F = 46.68, P = 0.001) associated with environmental variables (largely salinity: 27.48% contribution to total variance). In contrast, the nearby Mackay Harbour exhibited a far more stable community structure, with no marked changes in fish assemblages observed between the sampled seasons. Among the four sampled locations, variation in fish community composition was more pronounced within the wet season (F = 2.5, P = 0.001). Notably, variation in the wet season was significantly correlated with agricultural contaminants (phosphorus: 6.25%, pesticides: 5.22%) alongside environmental variables (salinity: 5.61%, DOC: 5.57%). Historically contaminated and relatively unimpacted estuaries each demonstrated distinct fish communities, reflecting their associated catchment use. Our findings emphasise that while seasonal effects play a key role in shaping the community structure of fish in this region, agricultural contaminants are also important contributors in estuarine systems.


Asunto(s)
Agricultura , Arrecifes de Coral , ADN Ambiental , Monitoreo del Ambiente , Peces , Salinidad , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Australia , Plaguicidas , Estuarios , Ecosistema
3.
Mol Ecol Resour ; 24(3): e13915, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38099394

RESUMEN

Continued advancements in environmental DNA (eDNA) research have made it possible to access intraspecific variation from eDNA samples, opening new opportunities to expand non-invasive genetic studies of wildlife populations. However, the use of eDNA samples for individual genotyping, as typically performed in non-invasive genetics, still remains elusive. We present successful individual genotyping of eDNA obtained from snow tracks of three large carnivores: brown bear (Ursus arctos), European lynx (Lynx lynx) and wolf (Canis lupus). DNA was extracted using a protocol for isolating water eDNA and genotyped using amplicon sequencing of short tandem repeats (STR), and for brown bear a sex marker, on a high-throughput sequencing platform. Individual genotypes were obtained for all species, but genotyping performance differed among samples and species. The proportion of samples genotyped to individuals was higher for brown bear (5/7) and wolf (7/10) than for lynx (4/9), and locus genotyping success was greater for brown bear (0.88). The sex marker was typed in six out of seven brown bear samples. Results for three species show that reliable individual genotyping, including sex identification, is now possible from eDNA in snow tracks, underlining its vast potential to complement the non-invasive genetic methods used for wildlife. To fully leverage the application of snow track eDNA, improved understanding of the ideal species- and site-specific sampling conditions, as well as laboratory methods promoting genotyping success, is needed. This will also inform efforts to retrieve and type nuclear DNA from other eDNA samples, thereby advancing eDNA-based individual and population-level studies.


Asunto(s)
ADN Ambiental , Lynx , Ursidae , Lobos , Humanos , Animales , Ursidae/genética , Lobos/genética , Nieve , Lynx/genética , ADN/genética , Genotipo , Animales Salvajes/genética
4.
Mol Ecol ; : e17257, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38149334

RESUMEN

The question of how local adaptation takes place remains a fundamental question in evolutionary biology. The variation of allele frequencies in genes under selection over environmental gradients remains mainly theoretical and its empirical assessment would help understanding how adaptation happens over environmental clines. To bring new insights to this issue we set up a broad framework which aimed to compare the adaptive trajectories over environmental clines in two domesticated mammal species co-distributed in diversified landscapes. We sequenced the genomes of 160 sheep and 161 goats extensively managed along environmental gradients, including temperature, rainfall, seasonality and altitude, to identify genes and biological processes shaping local adaptation. Allele frequencies at putatively adaptive loci were rarely found to vary gradually along environmental gradients, but rather displayed a discontinuous shift at the extremities of environmental clines. Of the 430 candidate adaptive genes identified, only 6 were orthologous between sheep and goats and those responded differently to environmental pressures, suggesting different putative mechanisms involved in local adaptation in these two closely related species. Interestingly, the genomes of the 2 species were impacted differently by the environment, genes related to signatures of selection were most related to altitude, slope and rainfall seasonality for sheep, and summer temperature and spring rainfall for goats. The diversity of candidate adaptive pathways may result from a high number of biological functions involved in the adaptations to multiple eco-climatic gradients, and a differential role of climatic drivers on the two species, despite their co-distribution along the same environmental gradients. This study describes empirical examples of clinal variation in putatively adaptive alleles with different patterns in allele frequency distributions over continuous environmental gradients, thus showing the diversity of genetic responses in adaptive landscapes and opening new horizons for understanding genomics of adaptation in mammalian species and beyond.

5.
Nat Commun ; 13(1): 2750, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585056

RESUMEN

There is still limited consensus on the evolutionary history of species-rich temperate alpine floras due to a lack of comparable and high-quality phylogenetic data covering multiple plant lineages. Here we reconstructed when and how European alpine plant lineages diversified, i.e., the tempo and drivers of speciation events. We performed full-plastome phylogenomics and used multi-clade comparative models applied to six representative angiosperm lineages that have diversified in European mountains (212 sampled species, 251 ingroup species total). Diversification rates remained surprisingly steady for most clades, even during the Pleistocene, with speciation events being mostly driven by geographic divergence and bedrock shifts. Interestingly, we inferred asymmetrical historical migration rates from siliceous to calcareous bedrocks, and from higher to lower elevations, likely due to repeated shrinkage and expansion of high elevation habitats during the Pleistocene. This may have buffered climate-related extinctions, but prevented speciation along elevation gradients as often documented for tropical alpine floras.


Asunto(s)
Evolución Biológica , Magnoliopsida , Clima , Ecosistema , Especiación Genética , Filogenia
6.
Mol Ecol Resour ; 22(5): 2018-2037, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35015377

RESUMEN

Low-coverage whole genome shotgun sequencing (or genome skimming) has emerged as a cost-effective method for acquiring genomic data in nonmodel organisms. This method provides sequence information on chloroplast genome (cpDNA), mitochondrial genome (mtDNA) and nuclear ribosomal regions (rDNA), which are over-represented within cells. However, numerous bioinformatic challenges remain to accurately and rapidly obtain such data in organisms with complex genomic structures and rearrangements, in particular for mtDNA in plants or for cpDNA in some plant families. Here we introduce the pipeline ORTHOSKIM, which performs in silico capture of targeted sequences from genomic and transcriptomic libraries without assembling whole organelle genomes. ORTHOSKIM proceeds in three steps: (i) global sequence assembly, (ii) mapping against reference sequences and (iii) target sequence extraction; importantly it also includes a range of quality control tests. Different modes are implemented to capture both coding and noncoding regions of cpDNA, mtDNA and rDNA sequences, along with predefined nuclear sequences (e.g., ultraconserved elements) or collections of single-copy orthologue genes. Moreover, aligned DNA matrices are produced for phylogenetic reconstructions, by performing multiple alignments of the captured sequences. While ORTHOSKIM is suitable for any eukaryote, a case study is presented here, using 114 genome-skimming libraries and four RNA sequencing libraries obtained for two plant families, Primulaceae and Ericaceae, the latter being a well-known problematic family for cpDNA assemblies. ORTHOSKIM recovered with high success rates cpDNA, mtDNA and rDNA sequences, well suited to accurately infer evolutionary relationships within these families. ORTHOSKIM is released under a GPL-3 licence and is available at: https://github.com/cpouchon/ORTHOSKIM.


Asunto(s)
Genoma del Cloroplasto , Transcriptoma , ADN de Cloroplastos/genética , ADN Mitocondrial/genética , ADN Ribosómico/genética , Genómica/métodos , Filogenia , Análisis de Secuencia de ADN/métodos
7.
Front Genet ; 12: 723599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925440

RESUMEN

Sheep farming is a major source of meat in Morocco and plays a key role in the country's agriculture. This study aims at characterizing the whole-genome diversity and demographic history of the main Moroccan sheep breeds, as well as to identify selection signatures within and between breeds. Whole genome data from 87 individuals representing the five predominant local breeds were used to estimate their level of neutral genetic diversity and to infer the variation of their effective population size over time. In addition, we used two methods to detect selection signatures: either for detecting selective sweeps within each breed separately or by detecting differentially selected regions by contrasting different breeds. We identified hundreds of genomic regions putatively under selection, which related to several biological terms involved in local adaptation or the expression of zootechnical performances such as Growth, UV protection, Cell maturation or Feeding behavior. The results of this study revealed selection signatures in genes that have an important role in traits of interest and increased our understanding of how genetic diversity is distributed in these local breeds. Thus, Moroccan local sheep breeds exhibit both a high genetic diversity and a large set of adaptive variations, and therefore, represent a valuable genetic resource for the conservation of sheep in the context of climate change.

8.
Front Genet ; 12: 745284, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650601

RESUMEN

The way in which living organisms mobilize a combination of long-term adaptive mechanisms and short-term phenotypic plasticity to face environmental variations is still largely unknown. In the context of climate change, understanding the genetic and epigenetic bases for adaptation and plasticity is a major stake for preserving genomic resources and the resilience capacity of livestock populations. We characterized both epigenetic and genetic variations by contrasting 22 sheep and 21 goats from both sides of a climate gradient, focusing on free-ranging populations from Morocco. We produced for each individual Whole-Genome Sequence at 12X coverage and MeDIP-Seq data, to identify regions under selection and those differentially methylated. For both species, the analysis of genetic differences (FST) along the genome between animals from localities with high vs. low temperature annual variations detected candidate genes under selection in relation to environmental perception (5 genes), immunity (4 genes), reproduction (8 genes) and production (11 genes). Moreover, we found for each species one differentially methylated gene, namely AGPTA4 in goat and SLIT3 in sheep, which were both related, among other functions, to milk production and muscle development. In both sheep and goats, the comparison between genomic regions impacted by genetic and epigenetic variations suggests that climatic variations impacted similar biological pathways but different genes.

9.
Sci Robot ; 6(57)2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380756

RESUMEN

Undulatory swimming represents an ideal behavior to investigate locomotion control and the role of the underlying central and peripheral components in the spinal cord. Many vertebrate swimmers have central pattern generators and local pressure-sensitive receptors that provide information about the surrounding fluid. However, it remains difficult to study experimentally how these sensors influence motor commands in these animals. Here, using a specifically designed robot that captures the essential components of the animal neuromechanical system and using simulations, we tested the hypothesis that sensed hydrodynamic pressure forces can entrain body actuation through local feedback loops. We found evidence that this peripheral mechanism leads to self-organized undulatory swimming by providing intersegmental coordination and body oscillations. Swimming can be redundantly induced by central mechanisms, and we show that, therefore, a combination of both central and peripheral mechanisms offers a higher robustness against neural disruptions than any of them alone, which potentially explains how some vertebrates retain locomotor capabilities after spinal cord lesions. These results broaden our understanding of animal locomotion and expand our knowledge for the design of robust and modular robots that physically interact with the environment.

10.
Genome Biol Evol ; 13(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34264322

RESUMEN

During domestication processes, changes in selective pressures induce multiple phenotypical, physiological, and behavioral changes in target species. The rise of next-generation sequencing has provided a chance to study the genetics bases of these changes, most of the time based on single nucleotide polymorphisms (SNPs). However, several studies have highlighted the impact of structural variations (SVs) on individual fitness, particularly in domestic species. We aimed at unraveling the role of SVs during the domestication and later improvement of small ruminants by analyzing whole-genome sequences of 40 domestic sheep and 11 of their close wild relatives (Ovis orientalis), and 40 goats and 18 of their close wild relatives (Capra aegagrus). Using a combination of detection tools, we called 45,796 SVs in Ovis and 15,047 SVs in Capra genomes, including insertions, deletions, inversions, copy number variations, and chromosomal translocations. Most of these SVs were previously unreported in small ruminants. 69 and 45 SVs in sheep and goats, respectively, were in genomic regions with neighboring SNPs highly differentiated between wilds and domestics (i.e., putatively related to domestication). Among them, 25 and 20 SVs were close to or overlapping with genes related to physiological and morpho-anatomical traits linked with productivity (e.g., size, meat or milk quality, wool color), reproduction, or immunity. Finally, several of the SVs differentiated between wilds and domestics would not have been detected by screening only the differentiation of SNPs surrounding them, highlighting the complementarity of SVs and SNPs based approaches to detect signatures of selection.


Asunto(s)
Variaciones en el Número de Copia de ADN , Domesticación , Animales , Genoma , Genómica , Cabras/genética , Ovinos/genética
11.
Front Plant Sci ; 12: 679428, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163510

RESUMEN

Mountain environments are marked by an altitudinal zonation of habitat types. They are home to a multitude of terrestrial green algae, who have to cope with abiotic conditions specific to high elevation, e.g., high UV irradiance, alternating desiccation, rain and snow precipitations, extreme diurnal variations in temperature and chronic scarceness of nutrients. Even though photosynthetic green algae are primary producers colonizing open areas and potential markers of climate change, their overall biodiversity in the Alps has been poorly studied so far, in particular in soil, where algae have been shown to be key components of microbial communities. Here, we investigated whether the spatial distribution of green algae followed the altitudinal zonation of the Alps, based on the assumption that algae settle in their preferred habitats under the pressure of parameters correlated with elevation. We did so by focusing on selected representative elevational gradients at distant locations in the French Alps, where soil samples were collected at different depths. Soil was considered as either a potential natural habitat or temporary reservoir of algae. We showed that algal DNA represented a relatively low proportion of the overall eukaryotic diversity as measured by a universal Eukaryote marker. We designed two novel green algae metabarcoding markers to amplify the Chlorophyta phylum and its Chlorophyceae class, respectively. Using our newly developed markers, we showed that elevation was a strong correlate of species and genus level distribution. Altitudinal zonation was thus determined for about fifty species, with proposed accessions in reference databases. In particular, Planophila laetevirens and Bracteococcus ruber related species as well as the snow alga Sanguina genus were only found in soil starting at 2,000 m above sea level. Analysis of environmental and bioclimatic factors highlighted the importance of pH and nitrogen/carbon ratios in the vertical distribution in soil. Capacity to grow heterotrophically may determine the Trebouxiophyceae over Chlorophyceae ratio. The intensity of freezing events (freezing degree days), proved also determinant in Chlorophyceae distribution. Guidelines are discussed for future, more robust and precise analyses of environmental algal DNA in mountain ecosystems and address green algae species distribution and dynamics in response to environmental changes.

13.
Mol Genet Genomics ; 296(2): 457-471, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33469716

RESUMEN

Next-generation sequencing technologies have opened a new era of research in population genetics. Following these new sequencing opportunities, the use of restriction enzyme-based genotyping techniques, such as restriction site-associated DNA sequencing (RAD-seq) or double-digest RAD-sequencing (ddRAD-seq), has dramatically increased in the last decade. From DNA sampling to SNP calling, the laboratory and bioinformatic parameters of enzyme-based techniques have been investigated in the literature. However, the impact of those parameters on downstream analyses and biological results remains less documented. In this study, we investigated the effects of sevral pre- and post-sequencing settings on ddRAD-seq results for two biological systems: a complex of butterfly species (Coenonympha sp.) and several populations of common beech (Fagus sylvatica). Our results suggest that pre-sequencing parameters (i.e., DNA quantity, number of PCR cycles during library preparation) have a significant impact on the number of recovered reads and SNPs, on the number of unique alleles and on individual heterozygosity. In the same way, we found that post-sequencing settings (i.e., clustering and minimum coverage thresholds) influenced loci reconstruction (e.g., number of loci, mean coverage) and SNP calling (e.g., number of SNPs; heterozygosity) but had only a marginal impact on downstream analyses (e.g., measure of genetic differentiation, estimation of individual admixture, and demographic inferences). In addition, replication analyses confirmed the reproducibility of the ddRAD-seq procedure. Overall, this study assesses the degree of sensitivity of ddRAD-seq data to pre- and post-sequencing protocols, and illustrates its robustness when studying population genetics.


Asunto(s)
Mariposas Diurnas/genética , Fagus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Alelos , Animales , Biología Computacional/métodos , Enzimas de Restricción del ADN/metabolismo , Genética de Población , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
14.
Mol Ecol ; 30(13): 3203-3220, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33150613

RESUMEN

Macroinvertebrate assemblages are the most common bioindicators used for stream biomonitoring, yet the standard approach exhibits several time-consuming steps, including the sorting and identification of organisms based on morphological criteria. In this study, we examined if DNA metabarcoding could be used as an efficient molecular-based alternative to the morphology-based monitoring of streams using macroinvertebrates. We compared results achieved with the standard morphological identification of organisms sampled in 18 sites located on 15 French wadeable streams to results obtained with the DNA metabarcoding identification of sorted bulk material of the same macroinvertebrate samples, using read numbers (expressed as relative frequencies) as a proxy for abundances. In particular, we evaluated how combining and filtering metabarcoding data obtained from three different markers (COI: BF1-BR2, 18S: Euka02 and 16S: Inse01) could improve the efficiency of bioassessment. In total, 140 taxa were identified based on morphological criteria, and 127 were identified based on DNA metabarcoding using the three markers, with an overlap of 99 taxa. The threshold values used for sequence filtering based on the "best identity" criterion and the number of reads had an effect on the assessment efficiency of data obtained with each marker. Compared to single marker results, combining data from different markers allowed us to improve the match between biotic index values obtained with the bulk DNA versus morphology-based approaches. Both approaches assigned the same ecological quality class to a majority (86%) of the site sampling events, highlighting both the efficiency of metabarcoding as a biomonitoring tool but also the need for further research to improve this efficiency.


Asunto(s)
Código de Barras del ADN Taxonómico , Ríos , Animales , Biodiversidad , ADN/genética , Monitoreo del Ambiente , Invertebrados/genética
15.
Mol Ecol ; 30(13): 3189-3202, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32920861

RESUMEN

Metabarcoding of bulk or environmental DNA has great potential for biomonitoring of freshwater environments. However, successful application of metabarcoding to biodiversity monitoring requires universal primers with high taxonomic coverage that amplify highly variable, short metabarcodes with high taxonomic resolution. Moreover, reliable and extensive reference databases are essential to match the outcome of metabarcoding analyses with available taxonomy and biomonitoring indices. Benthic invertebrates, particularly insects, are key taxa for freshwater bioassessment. Nevertheless, few studies have so far assessed markers for metabarcoding of freshwater macrobenthos. Here we combined in silico and laboratory analyses to test the performance of different markers amplifying regions in the 18S rDNA (Euka02), 16S rDNA (Inse01) and COI (BF1_BR2-COI) genes, and developed an extensive database of benthic macroinvertebrates of France and Europe, with a particular focus on key insect orders (Ephemeroptera, Plecoptera and Trichoptera). Analyses on 1,514 individuals representing different taxa of benthic macroinvertebrates showed very different amplification success across primer combinations. The Euka02 marker showed the highest universality, while the Inse01 marker showed excellent performance for the amplification of insects. BF1_BR2-COI showed the highest resolution, while the resolution of Euka02 was often limited. By combining our data with GenBank information, we developed a curated database including sequences representing 822 genera. The heterogeneous performance of the different primers highlights the complexity in identifying the best markers, and advocates for the integration of multiple metabarcodes for a more comprehensive and accurate understanding of ecological impacts on freshwater biodiversity.


Asunto(s)
Código de Barras del ADN Taxonómico , Agua Dulce , Animales , Biodiversidad , Europa (Continente) , Francia , Humanos
16.
Conserv Physiol ; 8(1): coaa109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33365131

RESUMEN

Declining pollinator populations worldwide are attributed to multiple stressors, including the loss of quality forage. Habitat management in agricultural areas often targets honey bees (Apis mellifera L.) specifically, with the assumption that native bees will benefit from an 'umbrella species' strategy. We tested this theory using a conservation physiology approach to compare the effects of landscape composition and floral dietary composition on the physiological status of honey bees and Melissodes desponsa in eastern South Dakota, USA. The total glycogen, lipid and protein concentrations were quantified from field collected bees. Next-generation sequencing of the trnL chloroplast gene from bee guts was used to evaluate dietary composition. The effects of landscape and dietary composition on macronutrient concentrations were compared between bee species. As the mean land-use patch area increased, honey bee glycogen levels increased, though M. desponsa experienced a decrease in glycogen. Protein levels decreased in honey bees as the largest patch index, a measure of single patch dominance, increased versus M. desponsa. Lipids in both species were unaffected by the measured landscape variables. Dietary analysis revealed that honey bees foraged preferentially on weedy non-native plant species, while M. desponsa sought out native and rarer species, in addition to utilizing non-native plants. Both species foraged on Asteraceae, Oleaceae and Fabaceae, specifically Melilotus sp. and Medicago sp. Dietary composition was not predictive of the macronutrients measured for either species. Together, these data highlight the management importance of including patch area in conservation recommendations, as bee species may have divergent physiological responses to landscape characteristics. While solitary bees may forage on weedy introduced plants in agricultural areas, robust strategies should also reincorporate native plant species, though they may not be preferred by honey bees, to maximize overall health and diversity of pollinator communities.

17.
Heredity (Edinb) ; 125(5): 290-303, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32728043

RESUMEN

Genes of the major histocompatibility complex (MHC) are involved in acquired immunity in vertebrates. Only a few studies have investigated the fitness consequences of MHC gene diversity in wild populations. Here, we looked at the association between annual survival and body mass and MHC-DRB exon 2 (MHC-DRB) genetic diversity, obtained from high-throughput sequencing, in two declining migratory caribou (Rangifer tarandus) herds. To disentangle the potential direct and general effects of MHC-DRB genetic diversity, we compared different indices of diversity that were either based on DNA-sequence variation or on physicochemical divergence of the translated peptides, thereby covering a gradient of allelic-to-functional diversity. We found that (1) body mass was not related to MHC-DRB diversity or genotype, and (2) adult survival probability was negatively associated with point accepted mutation distance, a corrected distance that considers the likelihood of each amino acid substitution to be accepted by natural selection. In addition, we found no evidence of fluctuating selection over time on MHC-DRB diversity. We concluded that direct effects were involved in the negative relationship between MHC functional diversity and survival, although the mechanism underlying this result remains unclear. A possible explanation could be that individuals with higher MHC diversity suffer higher costs of immunity (immunopathology). Our results suggest that genetic diversity is not always beneficial even in genes that are likely to be strongly shaped by balancing selection.


Asunto(s)
Migración Animal , Complejo Mayor de Histocompatibilidad , Reno , Alelos , Sustitución de Aminoácidos , Animales , Peso Corporal , Femenino , Genes MHC Clase II , Variación Genética , Complejo Mayor de Histocompatibilidad/genética , Masculino , Reno/genética , Selección Genética , Análisis de Supervivencia
18.
Mol Ecol ; 29(16): 3144-3154, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32654383

RESUMEN

Knowledge of how animal species use food resources available in the environment can increase our understanding of many ecological processes. However, obtaining this information using traditional methods is difficult for species feeding on a large variety of food items in highly diverse environments. We amplified the DNA of plants for 306 scat and 40 soil samples, and applied an environmental DNA metabarcoding approach to investigate food preferences, degree of diet specialization and diet overlap of seven herbivore rodent species of the genus Ctenomys distributed in southern and midwestern Brazil. The metabarcoding approach revealed that these species consume more than 60% of the plant families recovered in soil samples, indicating generalist feeding habits of ctenomyids. The family Poaceae was the most common food resource retrieved in scats of all species as well in soil samples. Niche overlap analysis indicated high overlap in the plant families and molecular operational taxonomic units consumed, mainly among the southern species. Interspecific differences in diet composition were influenced, among other factors, by the availability of resources in the environment. In addition, our results provide support for the hypothesis that the allopatric distributions of ctenomyids allow them to exploit the same range of resources when available, possibly because of the absence of interspecific competition.


Asunto(s)
Código de Barras del ADN Taxonómico , Roedores , Animales , Brasil , Dieta , Herbivoria , Roedores/genética
19.
Sci Rep ; 9(1): 17912, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31784587

RESUMEN

The origin of modern disjunct plant distributions in the Brazilian Highlands with strong floristic affinities to distant montane rainforests of isolated mountaintops in the northeast and northern Amazonia and the Guyana Shield remains unknown. We tested the hypothesis that these unexplained biogeographical patterns reflect former ecosystem rearrangements sustained by widespread plant migrations possibly due to climatic patterns that are very dissimilar from present-day conditions. To address this issue, we mapped the presence of the montane arboreal taxa Araucaria, Podocarpus, Drimys, Hedyosmum, Ilex, Myrsine, Symplocos, and Weinmannia, and cool-adapted plants in the families Myrtaceae, Ericaceae, and Arecaceae (palms) in 29 palynological records during Heinrich Stadial 1 Event, encompassing a latitudinal range of 30°S to 0°S. In addition, Principal Component Analysis and Species Distribution Modelling were used to represent past and modern habitat suitability for Podocarpus and Araucaria. The data reveals two long-distance patterns of plant migration connecting south/southeast to northeastern Brazil and Amazonia with a third short route extending from one of them. Their paleofloristic compositions suggest a climatic scenario of abundant rainfall and relative lower continental surface temperatures, possibly intensified by the effects of polar air incursions forming cold fronts into the Brazilian Highlands. Although these taxa are sensitive to changes in temperature, the combined pollen and speleothems proxy data indicate that this montane rainforest expansion during Heinrich Stadial 1 Event was triggered mainly by a less seasonal rainfall regime from the subtropics to the equatorial region.

20.
Sci Adv ; 5(7): eaav8391, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31281883

RESUMEN

A 1000-cow study across four European countries was undertaken to understand to what extent ruminant microbiomes can be controlled by the host animal and to identify characteristics of the host rumen microbiome axis that determine productivity and methane emissions. A core rumen microbiome, phylogenetically linked and with a preserved hierarchical structure, was identified. A 39-member subset of the core formed hubs in co-occurrence networks linking microbiome structure to host genetics and phenotype (methane emissions, rumen and blood metabolites, and milk production efficiency). These phenotypes can be predicted from the core microbiome using machine learning algorithms. The heritable core microbes, therefore, present primary targets for rumen manipulation toward sustainable and environmentally friendly agriculture.


Asunto(s)
Bovinos/genética , Microbioma Gastrointestinal/genética , Metano/metabolismo , Leche/metabolismo , Animales , Sangre/metabolismo , Bovinos/microbiología , Estudios de Cohortes , Femenino , Microbioma Gastrointestinal/fisiología , Fenotipo , Filogenia , Rumen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...