Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2940, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618700

RESUMEN

Skeletal muscle can repair and regenerate due to resident stem cells known as satellite cells. The muscular dystrophies are progressive muscle wasting diseases underscored by chronic muscle damage that is continually repaired by satellite cell-driven regeneration. Here we generate a genetic strategy to mediate satellite cell ablation in dystrophic mouse models to investigate how satellite cells impact disease trajectory. Unexpectedly, we observe that depletion of satellite cells reduces dystrophic disease features, with improved histopathology, enhanced sarcolemmal stability and augmented muscle performance. Mechanistically, we demonstrate that satellite cells initiate expression of the myogenic transcription factor MyoD, which then induces re-expression of fetal genes in the myofibers that destabilize the sarcolemma. Indeed, MyoD re-expression in wildtype adult skeletal muscle reduces membrane stability and promotes histopathology, while MyoD inhibition in a mouse model of muscular dystrophy improved membrane stability. Taken together these observations suggest that satellite cell activation and the fetal gene program is maladaptive in chronic dystrophic skeletal muscle.


Asunto(s)
Distrofias Musculares , Células Satélite del Músculo Esquelético , Animales , Modelos Animales de Enfermedad , Ratones , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Madre
2.
JCI Insight ; 4(15): e128722, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31393098

RESUMEN

Collagen production in the adult heart is thought to be regulated by the fibroblast, although cardiomyocytes and endothelial cells also express multiple collagen mRNAs. Molecular chaperones are required for procollagen biosynthesis, including heat shock protein 47 (Hsp47). To determine the cell types critically involved in cardiac injury­induced fibrosis theHsp47 gene was deleted in cardiomyocytes, endothelial cells, or myofibroblasts. Deletion ofHsp47 from cardiomyocytes during embryonic development or adult stages, or deletion from adult endothelial cells, did not affect cardiac fibrosis after pressure overload injury. However, myofibroblast-specific ablation of Hsp47; blocked fibrosis and deposition of collagens type I, III, and V following pressure overload as well as significantly reduced cardiac hypertrophy. Fibroblast-specific Hsp47-deleted mice showed lethality after myocardial infarction injury, with ineffective scar formation and ventricular wall rupture. Similarly, only myofibroblast-specific deletion of Hsp47reduced fibrosis and disease in skeletal muscle in a mouse model of muscular dystrophy. Mechanistically, deletion of Hsp47 from myofibroblasts reduced mRNA expression of fibrillar collagens and attenuated their proliferation in the heart without affecting paracrine secretory activity of these cells. The results show that myofibroblasts are the primary mediators of tissue fibrosis and scar formation in the injured adult heart, which unexpectedly affects cardiomyocyte hypertrophy.


Asunto(s)
Colágeno/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Ventrículos Cardíacos/patología , Distrofia Muscular de Cinturas/patología , Infarto del Miocardio/patología , Miofibroblastos/patología , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Fibrosis , Perfilación de la Expresión Génica , Proteínas del Choque Térmico HSP47/genética , Ventrículos Cardíacos/citología , Humanos , Masculino , Ratones , Músculo Esquelético/citología , Distrofia Muscular de Cinturas/genética , Infarto del Miocardio/etiología , Miocitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Cultivo Primario de Células , Ratas , Sarcoglicanos/genética , Remodelación Ventricular
3.
JCI Insight ; 52019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30964448

RESUMEN

Mitogen-activated protein kinase (MAPK) signaling consists of an array of successively acting kinases. The extracellular signal-regulated kinases 1/2 (ERK1/2) are major components of the greater MAPK cascade that transduce growth factor signaling at the cell membrane. Here we investigated ERK1/2 signaling in skeletal muscle homeostasis and disease. Using mouse genetics, we observed that the muscle-specific expression of a constitutively active MEK1 mutant promotes greater ERK1/2 signaling that mediates fiber-type switching to a slow, oxidative phenotype with type I myosin heavy chain expression. Using a conditional and temporally regulated Cre strategy as well as Mapk1 (ERK2) and Mapk3 (ERK1) genetically targeted mice, MEK1-ERK2 signaling was shown to underlie this fast-to-slow fiber type switching in adult skeletal muscle as well as during development. Physiologic assessment of these activated MEK1-ERK1/2 mice showed enhanced metabolic activity and oxygen consumption with greater muscle fatigue resistance. Moreover, induction of MEK1-ERK1/2 signaling increased dystrophin and utrophin protein expression in a mouse model of limb-girdle muscle dystrophy and protected myofibers from damage. In summary, sustained MEK1-ERK1/2 activity in skeletal muscle produces a fast-to-slow fiber-type switch that protects from muscular dystrophy, suggesting a therapeutic approach to enhance the metabolic effectiveness of muscle and protect from dystrophic disease.


Asunto(s)
Sistema de Señalización de MAP Quinasas/genética , Fatiga Muscular/genética , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/genética , Consumo de Oxígeno/genética , Animales , Modelos Animales de Enfermedad , Distrofina/metabolismo , MAP Quinasa Quinasa 1/genética , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/fisiopatología , Índice de Severidad de la Enfermedad , Utrofina/metabolismo
4.
JCI Insight ; 3(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30429366

RESUMEN

The mitochondrial Ca2+ uniporter (MCU) complex mediates acute mitochondrial Ca2+ influx. In skeletal muscle, MCU links Ca2+ signaling to energy production by directly enhancing the activity of key metabolic enzymes in the mitochondria. Here, we examined the role of MCU in skeletal muscle development and metabolic function by generating mouse models for the targeted deletion of Mcu in embryonic, postnatal, and adult skeletal muscle. Loss of Mcu did not affect muscle growth and maturation or otherwise cause pathology. Skeletal muscle-specific deletion of Mcu in mice also did not affect myofiber intracellular Ca2+ handling, but it did inhibit acute mitochondrial Ca2+ influx and mitochondrial respiration stimulated by Ca2+, resulting in reduced acute exercise performance in mice. However, loss of Mcu also resulted in enhanced muscle performance under conditions of fatigue, with a preferential shift toward fatty acid metabolism, resulting in reduced body fat with aging. Together, these results demonstrate that MCU-mediated mitochondrial Ca2+ regulation underlies skeletal muscle fuel selection at baseline and under enhanced physiological demands, which affects total homeostatic metabolism.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Músculo Esquelético/metabolismo , Animales , Canales de Calcio/genética , Señalización del Calcio , Metabolismo Energético , Femenino , Marcación de Gen , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/crecimiento & desarrollo
5.
Mol Cell Biol ; 38(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712757

RESUMEN

Thrombospondins are stress-inducible secreted glycoproteins with critical functions in tissue injury and healing. Thrombospondin-4 (Thbs4) is protective in cardiac and skeletal muscle, where it activates an adaptive endoplasmic reticulum (ER) stress response, induces expansion of the ER, and enhances sarcolemmal stability. However, it is unclear if Thbs4 has these protective functions from within the cell, from the extracellular matrix, or from the secretion process itself. In this study, we generated transgenic mice with cardiac cell-specific overexpression of a secretion-defective mutant of Thbs4 to evaluate its exclusive intracellular and secretion-dependent functions. Like wild-type Thbs4, the secretion-defective mutant upregulates the adaptive ER stress response and expands the ER and intracellular vesicles in cardiomyocytes. However, only the secretion-defective Thbs4 mutant produces cardiomyopathy with sarcolemmal weakness and rupture that is associated with reduced adhesion-forming glycoproteins in the membrane. Similarly, deletion of Thbs4 in the mdx mouse model of Duchenne muscular dystrophy enhances cardiomyocyte membrane instability and cardiomyopathy. Finally, overexpression of the secretion-defective Thbs4 mutant in Drosophila, but not wild-type Thbs4, impaired muscle function and sarcomere alignment. These results suggest that transit through the secretory pathway is required for Thbs4 to augment sarcolemmal stability, while ER stress induction and vesicular expansion mediated by Thbs4 are exclusively intracellular processes.


Asunto(s)
Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Trombospondinas/metabolismo , Animales , Animales Modificados Genéticamente , Cardiomiopatías/genética , Células Cultivadas , Drosophila melanogaster/genética , Estrés del Retículo Endoplásmico , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Ratones Transgénicos , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Mutación , Miocitos Cardíacos/patología , Ratas , Sarcolema/metabolismo , Sarcolema/patología , Vías Secretoras , Trombospondinas/deficiencia , Trombospondinas/genética
6.
Circulation ; 138(10): 1012-1024, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-29666070

RESUMEN

BACKGROUND: Although c-Kit+ adult progenitor cells were initially reported to produce new cardiomyocytes in the heart, recent genetic evidence suggests that such events are exceedingly rare. However, to determine if these rare events represent true de novo cardiomyocyte formation, we deleted the necessary cardiogenic transcription factors Gata4 and Gata6 from c-Kit-expressing cardiac progenitor cells. METHODS: Kit allele-dependent lineage tracing and fusion analysis were performed in mice following simultaneous Gata4 and Gata6 cell type-specific deletion to examine rates of putative de novo cardiomyocyte formation from c-Kit+ cells. Bone marrow transplantation experiments were used to define the contribution of Kit allele-derived hematopoietic cells versus Kit lineage-dependent cells endogenous to the heart in contributing to apparent de novo lineage-traced cardiomyocytes. A Tie2CreERT2 transgene was also used to examine the global impact of Gata4 deletion on the mature cardiac endothelial cell network, which was further evaluated with select angiogenesis assays. RESULTS: Deletion of Gata4 in Kit lineage-derived endothelial cells or in total endothelial cells using the Tie2CreERT2 transgene, but not from bone morrow cells, resulted in profound endothelial cell expansion, defective endothelial cell differentiation, leukocyte infiltration into the heart, and a dramatic increase in Kit allele-dependent lineage-traced cardiomyocytes. However, this increase in labeled cardiomyocytes was an artefact of greater leukocyte-cardiomyocyte cellular fusion because of defective endothelial cell differentiation in the absence of Gata4. CONCLUSIONS: Past identification of presumed de novo cardiomyocyte formation in the heart from c-Kit+ cells using Kit allele lineage tracing appears to be an artefact of labeled leukocyte fusion with cardiomyocytes. Deletion of Gata4 from c-Kit+ endothelial progenitor cells or adult endothelial cells negatively impacted angiogenesis and capillary network integrity.


Asunto(s)
Linaje de la Célula , Proliferación Celular , Células Endoteliales/metabolismo , Factor de Transcripción GATA4/metabolismo , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-kit/metabolismo , Regeneración , Animales , Trasplante de Médula Ósea , Fusión Celular , Rastreo Celular/métodos , Células Cultivadas , Femenino , Factor de Transcripción GATA4/deficiencia , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Leucocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
7.
J Clin Invest ; 128(5): 2127-2143, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29664017

RESUMEN

Fibroblasts are a dynamic cell type that achieve selective differentiated states to mediate acute wound healing and long-term tissue remodeling with scarring. With myocardial infarction injury, cardiomyocytes are replaced by secreted extracellular matrix proteins produced by proliferating and differentiating fibroblasts. Here, we employed 3 different mouse lineage-tracing models and stage-specific gene profiling to phenotypically analyze and classify resident cardiac fibroblast dynamics during myocardial infarction injury and stable scar formation. Fibroblasts were activated and highly proliferative, reaching a maximum rate within 2 to 4 days after infarction injury, at which point they expanded 3.5-fold and were maintained long term. By 3 to 7 days, these cells differentiated into myofibroblasts that secreted abundant extracellular matrix proteins and expressed smooth muscle α-actin to structurally support the necrotic area. By 7 to 10 days, myofibroblasts lost proliferative ability and smooth muscle α-actin expression as the collagen-containing extracellular matrix and scar fully matured. However, these same lineage-traced initial fibroblasts persisted within the scar, achieving a new molecular and stable differentiated state referred to as a matrifibrocyte, which was also observed in the scars of human hearts. These cells express common and unique extracellular matrix and tendon genes that are more specialized to support the mature scar.


Asunto(s)
Diferenciación Celular , Cicatriz/metabolismo , Matriz Extracelular/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miofibroblastos/metabolismo , Animales , Cicatriz/patología , Matriz Extracelular/patología , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Ratones , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patología , Infarto del Miocardio/patología , Miocardio/patología , Miofibroblastos/patología
8.
Sci Rep ; 6: 28846, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27349908

RESUMEN

Motor neuron loss and neurogenic atrophy are hallmarks of spinal muscular atrophy (SMA), a leading genetic cause of infant deaths. Previous studies have focused on deciphering disease pathogenesis in motor neurons. However, a systematic evaluation of atrophy pathways in muscles is lacking. Here, we show that these pathways are differentially activated depending on severity of disease in two different SMA model mice. Although proteasomal degradation is induced in skeletal muscle of both models, autophagosomal degradation is present only in Smn(2B/-) mice but not in the more severe Smn(-/-); SMN2 mice. Expression of FoxO transcription factors, which regulate both proteasomal and autophagosomal degradation, is elevated in Smn(2B/-) muscle. Remarkably, administration of trichostatin A reversed all molecular changes associated with atrophy. Cardiac muscle also exhibits differential induction of atrophy between Smn(2B/-) and Smn(-/-); SMN2 mice, albeit in the opposite direction to that of skeletal muscle. Altogether, our work highlights the importance of cautious analysis of different mouse models of SMA as distinct patterns of atrophy induction are at play depending on disease severity. We also revealed that one of the beneficial impacts of trichostatin A on SMA model mice is via attenuation of muscle atrophy through reduction of FoxO expression to normal levels.


Asunto(s)
Modelos Animales de Enfermedad , Atrofia Muscular Espinal/genética , Atrofia Muscular/genética , Transducción de Señal/genética , Animales , Proteínas de Ciclo Celular , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Humanos , Ácidos Hidroxámicos/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Atrofia Muscular/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
9.
Hum Mol Genet ; 23(20): 5452-63, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24876160

RESUMEN

Muscular dystrophies are a group of genetic diseases that lead to muscle wasting and, in most cases, premature death. Cytokines and inflammatory factors are released during the disease process where they promote deleterious signaling events that directly participate in myofiber death. Here, we show that p38α, a kinase in the greater mitogen-activated protein kinase (MAPK)-signaling network, serves as a nodal regulator of disease signaling in dystrophic muscle. Deletion of Mapk14 (p38α-encoding gene) in the skeletal muscle of mdx- (lacking dystrophin) or sgcd- (δ-sarcoglycan-encoding gene) null mice resulted in a significant reduction in pathology up to 6 months of age. We also generated MAPK kinase 6 (MKK6) muscle-specific transgenic mice to model heightened p38α disease signaling that occurs in dystrophic muscle, which resulted in severe myofiber necrosis and many hallmarks of muscular dystrophy. Mechanistically, we show that p38α directly induces myofiber death through a mitochondrial-dependent pathway involving direct phosphorylation and activation of the pro-death Bcl-2 family member Bax. Indeed, muscle-specific deletion of Bax, but not the apoptosis regulatory gene Tp53 (encoding p53), significantly reduced dystrophic pathology in the muscles of MKK6 transgenic mice. Moreover, use of a p38 MAPK pharmacologic inhibitor reduced dystrophic disease in Sgcd(-/-) mice suggesting a future therapeutic approach to delay disease.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/patología , Proteína X Asociada a bcl-2/metabolismo , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Sarcoglicanos/genética , Transducción de Señal , Proteína X Asociada a bcl-2/genética
10.
Hum Mol Genet ; 23(16): 4249-59, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24691550

RESUMEN

Mutations in the survival motor neuron (SMN1) gene lead to the neuromuscular disease spinal muscular atrophy (SMA). Although SMA is primarily considered as a motor neuron disease, the importance of muscle defects in its pathogenesis has not been fully examined. We use both primary cell culture and two different SMA model mice to demonstrate that reduced levels of Smn lead to a profound disruption in the expression of myogenic genes. This disruption was associated with a decrease in myofiber size and an increase in immature myofibers, suggesting that Smn is crucial for myogenic gene regulation and early muscle development. Histone deacetylase inhibitor trichostatin A treatment of SMA model mice increased myofiber size, myofiber maturity and attenuated the disruption of the myogenic program in these mice. Taken together, our work highlights the important contribution of myogenic program dysregulation to the muscle weakness observed in SMA.


Asunto(s)
Regulación de la Expresión Génica , Desarrollo de Músculos/genética , Atrofia Muscular Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Desnervación Muscular , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Mioblastos/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
11.
Skelet Muscle ; 3(1): 24, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24119341

RESUMEN

BACKGROUND: The childhood neuromuscular disease spinal muscular atrophy (SMA) is caused by mutations or deletions of the survival motor neuron (SMN1) gene. Although SMA has traditionally been considered a motor neuron disease, the muscle-specific requirement for SMN has never been fully defined. Therefore, the purpose of this study was to investigate muscle defects in mouse models of SMA. METHODS: We have taken advantage of two different mouse models of SMA, the severe Smn-/-;SMN2 mice and the less severe Smn2B/- mice. We have measured the maximal force produced from control muscles and those of SMA model mice by direct stimulation using an ex vivo apparatus. Immunofluorescence and immunoblot experiments were performed to uncover muscle defects in mouse models of SMA. Means from control and SMA model mice samples were compared using an analysis of variance test and Student's t tests. RESULTS: We report that tibialis anterior (TA) muscles of phenotype stage Smn-/-;SMN2 mice generate 39% less maximal force than muscles from control mice, independently of aberrant motor neuron signal transmission. In addition, during muscle fatigue, the Smn-/-;SMN2 muscle shows early onset and increased unstimulated force compared with controls. Moreover, we demonstrate a significant decrease in force production in muscles from pre-symptomatic Smn-/-;SMN2 and Smn2B/- mice, indicating that muscle weakness is an early event occurring prior to any overt motor neuron loss and muscle denervation. Muscle weakness in mouse models of SMA was associated with a delay in the transition from neonatal to adult isoforms of proteins important for proper muscle contractions, such as ryanodine receptors and sodium channels. Immunoblot analyses of extracts from hindlimb skeletal muscle revealed aberrant levels of the sarcoplasmic reticulum Ca2+ ATPase. CONCLUSIONS: The findings from this study reveal a delay in the appearance of mature isoforms of proteins important for muscle contractions, as well as muscle weakness early in the disease etiology, thus highlighting the contributions of skeletal muscle defects to the SMA phenotype.

12.
Int Rev Cell Mol Biol ; 300: 85-120, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23273860

RESUMEN

Neuronal dystonin isoforms are giant cytoskeletal cross-linking proteins capable of interacting with actin and microtubule networks, protein complexes, membrane-bound organelles and cellular membranes. In the neuromuscular system, dystonin proteins are involved in maintaining cytoarchitecture integrity and have more recently been ascribed roles in other cellular processes such as organelle structure and intracellular transport. Loss of dystonin expression in mice results in a profound sensory ataxia termed dystonia musculorum (dt), which is attributed to the degeneration of sensory nerves. This chapter provides a comprehensive overview of the dystonin gene, the structure of encoded proteins, biological functions of neuronal dystonin isoforms, and known roles of dystonin in dt pathogenesis and human disease.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/fisiología , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Distonina , Variación Genética , Humanos , Ratones , Modelos Neurológicos , Biología Molecular , Mutación , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Estructura Terciaria de Proteína , Células Receptoras Sensoriales/citología , Fracciones Subcelulares/metabolismo
13.
Front Physiol ; 4: 356, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24391590

RESUMEN

Spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and spinal-bulbar muscular atrophy (SBMA) are devastating diseases characterized by the degeneration of motor neurons. Although the molecular causes underlying these diseases differ, recent findings have highlighted the contribution of intrinsic skeletal muscle defects in motor neuron diseases. The use of cell culture and animal models has led to the important finding that muscle defects occur prior to and independently of motor neuron degeneration in motor neuron diseases. In SMA for instance, the muscle specific requirements of the SMA disease-causing gene have been demonstrated by a series of genetic rescue experiments in SMA models. Conditional ALS mouse models expressing a muscle specific mutant SOD1 gene develop atrophy and muscle degeneration in the absence of motor neuron pathology. Treating SBMA mice by over-expressing IGF-1 in a skeletal muscle-specific manner attenuates disease severity and improves motor neuron pathology. In the present review, we provide an in depth description of muscle intrinsic defects, and discuss how they impact muscle function in these diseases. Furthermore, we discuss muscle-specific therapeutic strategies used to treat animal models of SMA, ALS, and SBMA. The study of intrinsic skeletal muscle defects is crucial for the understanding of the pathophysiology of these diseases and will open new therapeutic options for the treatment of motor neuron diseases.

14.
BMC Med ; 10: 24, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22397316

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. It is caused by mutations/deletions of the survival motor neuron 1 (SMN1) gene and is typified by the loss of spinal cord motor neurons, muscular atrophy, and in severe cases, death. The SMN protein is ubiquitously expressed and various cellular- and tissue-specific functions have been investigated to explain the specific motor neuron loss in SMA. We have previously shown that the RhoA/Rho kinase (ROCK) pathway is misregulated in cellular and animal SMA models, and that inhibition of ROCK with the chemical Y-27632 significantly increased the lifespan of a mouse model of SMA. In the present study, we evaluated the therapeutic potential of the clinically approved ROCK inhibitor fasudil. METHODS: Fasudil was administered by oral gavage from post-natal day 3 to 21 at a concentration of 30 mg/kg twice daily. The effects of fasudil on lifespan and SMA pathological hallmarks of the SMA mice were assessed and compared to vehicle-treated mice. For the Kaplan-Meier survival analysis, the log-rank test was used and survival curves were considered significantly different at P < 0.05. For the remaining analyses, the Student's two-tail t test for paired variables and one-way analysis of variance (ANOVA) were used to test for differences between samples and data were considered significantly different at P < 0.05. RESULTS: Fasudil significantly improves survival of SMA mice. This dramatic phenotypic improvement is not mediated by an up-regulation of Smn protein or via preservation of motor neurons. However, fasudil administration results in a significant increase in muscle fiber and postsynaptic endplate size, and restores normal expression of markers of skeletal muscle development, suggesting that the beneficial effects of fasudil could be muscle-specific. CONCLUSIONS: Our work underscores the importance of muscle as a therapeutic target in SMA and highlights the beneficial potential of ROCK inhibitors as a therapeutic strategy for SMA and for other degenerative diseases characterized by muscular atrophy and postsynaptic immaturity.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Atrofia Muscular Espinal/tratamiento farmacológico , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/administración & dosificación , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/uso terapéutico , Animales , Células del Asta Anterior/efectos de los fármacos , Células del Asta Anterior/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Marcha/efectos de los fármacos , Longevidad/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Placa Motora/efectos de los fármacos , Placa Motora/patología , Placa Motora/fisiopatología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/fisiopatología , Miogenina/metabolismo , Fenotipo , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/fisiopatología , Análisis de Supervivencia , Proteína 2 para la Supervivencia de la Neurona Motora/deficiencia , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Aumento de Peso/efectos de los fármacos
15.
PLoS One ; 5(3): e9465, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20209123

RESUMEN

Dystonin is a giant cytoskeletal protein belonging to the plakin protein family and is believed to crosslink the major filament systems in contractile cells. Previous work has demonstrated skeletal muscle defects in dystonin-deficient dystonia musculorum (dt) mice. In this study, we show that the dystonin muscle isoform is localized at the Z-disc, the H zone, the sarcolemma and intercalated discs in cardiac tissue. Based on this localization pattern, we tested whether dystonin-deficiency leads to structural defects in cardiac muscle. Desmin intermediate filament, microfilament, and microtubule subcellular organization appeared normal in dt hearts. Nevertheless, increased transcript levels of atrial natriuretic factor (ANF, 66%) beta-myosin heavy chain (beta-MHC, 95%) and decreased levels of sarcoplasmic reticulum calcium pump isoform 2A (SERCA2a, 26%), all signs of cardiac muscle stress, were noted in dt hearts. Hearts from two-week old dt mice were assessed for the presence of morphological and histological alterations. Heart to body weight ratios as well as left ventricular wall thickness and left chamber volume measurements were similar between dt and wild-type control mice. Hearts from dt mice also displayed no signs of fibrosis or calcification. Taken together, our data provide new insights into the intricate structure of the sarcomere by situating dystonin in cardiac muscle fibers and suggest that dystonin does not significantly influence the structural organization of cardiac muscle fibers during early postnatal development.


Asunto(s)
Proteínas Portadoras/genética , Proteínas del Citoesqueleto/genética , Distonía Muscular Deformante/genética , Proteínas del Tejido Nervioso/genética , Animales , Factor Natriurético Atrial/genética , Desmina/metabolismo , Distonina , Corazón/fisiopatología , Filamentos Intermedios/metabolismo , Ratones , Microtúbulos/metabolismo , Contracción Miocárdica , Miocardio/patología , Cadenas Pesadas de Miosina/genética , Isoformas de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
16.
J Proteome Res ; 9(4): 1659-69, 2010 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-20201562

RESUMEN

Mutations in the survival motor neuron (SMN) gene cause spinal muscular atrophy (SMA), a neuromuscular disease associated with muscle weakness that progresses to paralysis, respiratory distress, and ultimately death. Both neurons and muscle are severely affected in this disease. Tandem affinity purification (TAP) has emerged as a useful tool for studying protein complexes in vitro. We have used this purification system to discover novel SMN interacting partners in C2C12 muscle and PC12 neuronal cells. To do so, we fused a TAP-tag, consisting of a HIS hexamer and FLAG epitope separated by the tobacco etch virus (TEV) protease cleavage site, to either the N- or C-terminal region of SMN. Interestingly, the profile of SMN interacting proteins varies depending on the cell type and stage. We have identified a number of novel SMN interacting proteins in both C2C12 and PC12 cells, and from among these we have validated Annexin II and myosin regulatory light chain (MRLC). The discovery of these proteins will lead to a better understanding of the mechanisms underlying the pathophysiology of SMA.


Asunto(s)
Cromatografía de Afinidad/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas del Complejo SMN/metabolismo , Animales , Anexina A2/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Histidina/metabolismo , Inmunoprecipitación , Ratones , Microscopía Fluorescente , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Oligopéptidos/metabolismo , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Reproducibilidad de los Resultados , Proteínas del Complejo SMN/genética , Nucleolina
17.
Muscle Nerve ; 41(3): 299-308, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19768769

RESUMEN

Striated muscle cells contain numerous architectural proteins that contribute to the function of muscle as generators of mechanical force. Among these proteins are crosslinkers belonging to the plakin family, namely plectin, microtubule-actin crosslinking factor (ACF7/MACF1), bullous pemphigoid antigen 1 (Bpag1/dystonin), and desmoplakin. These plakin family members, in particular plectin and Bpag1/dystonin, exist as several isoforms. The domain organization of these plakin variants dictates their subcellular location and the proteins with which they interact. Several studies suggest that plakins exert unique functions within various compartments of the muscle cell including the sarcolemma, the sarcomere, both neuromuscular and myotendinous junctions in skeletal muscle, and the intercalated discs in cardiac muscle. Plakins may also regulate the cellular placement and function of specific organelles, notably the nucleus, mitochondria, Golgi apparatus, and sarcoplasmic reticulum. Here we review and summarize our current knowledge of the function of plakins in striated muscle cells.


Asunto(s)
Músculo Estriado/metabolismo , Plaquinas/metabolismo , Animales , Aparato de Golgi/metabolismo , Humanos , Unión Neuromuscular/metabolismo , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...