Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Cell Biol ; 93(5-6): 252-66, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24598388

RESUMEN

Mutations in the human actin depolymerizing factor cofilin2 result in an autosomal dominant form of nemaline myopathy. Here, we report on the targeted ablation of murine cofilin2, which leads to a severe skeletal muscle specific phenotype within the first two weeks after birth. Apart from skeletal muscle, cofilin2 is also expressed in heart and CNS, however the pathology was restricted to skeletal muscle. The two close family members of cofilin2 - ADF and cofilin1 - were co-expressed in muscle, but unable to compensate for the loss of cofilin2. While primary myofibril assembly and muscle development were unaffected in cofilin2 mutant mice, progressive muscle degeneration was observed between postnatal days 3 and 7. Muscle pathology was characterized by sarcoplasmic protein aggregates, fiber size disproportion, mitochondrial abnormalities and internal nuclei. The observed muscle pathology differed from nemaline myopathy, but showed combined features of actin-associated myopathy and myofibrillar myopathy. In cofilin2 mutant mice, the postnatal expression pattern and turnover of sarcomeric α-actin isoforms were altered. Levels of smooth muscle α-actin were increased and remained high in developing muscles, suggesting that cofilin2 plays a crucial role during the exchange of α-actin isoforms during the early postnatal remodeling of the sarcomere.


Asunto(s)
Actinas/metabolismo , Cofilina 2/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Agregado de Proteínas/genética , Sarcómeros/metabolismo , Animales , Encéfalo/metabolismo , Cofilina 2/genética , Citoesqueleto/genética , Citoesqueleto/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Desarrollo de Músculos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/patología , Músculo Liso/crecimiento & desarrollo , Músculo Liso/metabolismo , Enfermedades Musculares/patología , Miocardio/metabolismo , Especificidad de Órganos
2.
Nucleic Acids Res ; 40(9): 4086-96, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22238374

RESUMEN

The brain cytoplasmic RNA, BC1, is a small non-coding RNA that is found in different RNP particles, some of which are involved in translational control. One component of BC1-containing RNP complexes is the fragile X mental retardation protein (FMRP) that is implicated in translational repression. Peptide mapping and computational simulations show that the tudor domain of FMRP makes specific contacts to BC1 RNA. Endogenous BC1 RNA is 2'-O-methylated in nucleotides that contact the FMRP interface, and methylation can affect this interaction. In the cell body BC1 2'-O-methylations are present in both the nucleus and the cytoplasm, but they are virtually absent at synapses where the FMRP-BC1-mRNA complex exerts its function. These results strongly suggest that subcellular region-specific modifications of BC1 affect the binding to FMRP and the interaction with its mRNA targets. We finally show that BC1 RNA has an important role in translation of certain mRNAs associated to FMRP. All together these findings provide further insights into the translational regulation by the FMRP-BC1 complex at synapses.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , ARN Citoplasmático Pequeño/metabolismo , Sinapsis/metabolismo , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Neuronas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN Citoplasmático Pequeño/química , ARN Citoplasmático Pequeño/genética
3.
Mol Cell Neurosci ; 42(1): 66-74, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19497369

RESUMEN

Spinal muscular atrophy (SMA) is the most common human genetic disease resulting in infant mortality. SMA is caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. Why SMA specifically affects motor neurons remains poorly understood. We have shown that Smn deficient PC12 cells have increased levels of the neuronal profilin IIa protein, leading to an inappropriate activation of the RhoA/ROCK pathway. This suggests that mis-regulation of neuronal actin dynamics is central to SMA pathogenesis. Here, we demonstrate an increase in profilin IIa and a decrease in plastin 3 protein levels in a SMA mouse model. Furthermore, knock-out of profilin II upregulates plastin 3 expression in a Smn-dependent manner. However, the depletion of profilin II and the restoration of plastin 3 are not sufficient to rescue the SMA phenotype. Our study suggests that additional regulators of actin dynamics must also contribute to SMA pathogenesis.


Asunto(s)
Actinas/metabolismo , Regulación de la Expresión Génica/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Atrofia Muscular Espinal/metabolismo , Profilinas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/fisiopatología , Profilinas/genética , Ratas , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Transfección/métodos
4.
Cell ; 134(6): 1042-54, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18805096

RESUMEN

Strong evidence indicates that regulated mRNA translation in neuronal dendrites underlies synaptic plasticity and brain development. The fragile X mental retardation protein (FMRP) is involved in this process; here, we show that it acts by inhibiting translation initiation. A binding partner of FMRP, CYFIP1/Sra1, directly binds the translation initiation factor eIF4E through a domain that is structurally related to those present in 4E-BP translational inhibitors. Brain cytoplasmic RNA 1 (BC1), another FMRP binding partner, increases the affinity of FMRP for the CYFIP1-eIF4E complex in the brain. Levels of proteins encoded by known FMRP target mRNAs are increased upon reduction of CYFIP1 in neurons. Translational repression is regulated in an activity-dependent manner because BDNF or DHPG stimulation of neurons causes CYFIP1 to dissociate from eIF4E at synapses, thereby resulting in protein synthesis. Thus, the translational repression activity of FMRP in the brain is mediated, at least in part, by CYFIP1.


Asunto(s)
Encéfalo/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Biosíntesis de Proteínas , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Encéfalo/embriología , Células Cultivadas , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Alineación de Secuencia , Sinapsis
5.
Gene ; 344: 213-20, 2005 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-15656987

RESUMEN

In Vertebrates, all genes coding for ribosomal proteins, as well as those for other proteins implicated in the production and function of translation machinery, are regulated by mitogenic and nutritional stimuli, at the translational level. A cis-regulatory element necessary for this regulation is the typical 5'UTR, common to all ribosomal protein mRNAs, which always starts at the 5' end with several pyrimidines. Having noticed that the 3'UTR of all ribosomal protein mRNAs is much shorter than most cellular mRNAs, we have now studied the possible implication of this 3'UTR feature in the translational regulation. For this purpose, we constructed a number of chimeric genes whose transcribed mRNAs contain: (1) the 5'UTR of ribosomal protein S6 mRNA or, as a control, of beta-actin mRNA; (2) the EGFP reporter coding sequence from the starting AUG to the stop codon; (3) different 3'UTRs of various lengths. These constructs have been stably transfected in human HEK293 cells, and the translation regulation of the expressed chimeric mRNAs has been analyzed for translation efficiency, in growing and in serum starved cells, by the polysome association assay. The results obtained indicate that, while the typical growth-associated translational regulation is bestowed on an mRNA by the pyrimidine sequence containing 5'UTR, the stringency of regulation depends on the short size of the 3'UTR.


Asunto(s)
Regiones no Traducidas 3'/genética , Biosíntesis de Proteínas/genética , Nucleótidos de Pirimidina/genética , ARN Mensajero/genética , Secuencia de Bases , Línea Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mutación , Oligonucleótidos/genética , Plásmidos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína S6 Ribosómica/genética , Proteínas Ribosómicas/genética , Transfección
6.
Mol Genet Metab ; 76(4): 348-62, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12208142

RESUMEN

Mitochondrial NAD(+)-dependent succinic semialdehyde dehydrogenase (ALDH5A1, SSADH) represents the last enzyme in the GABA catabolism and irreversibly oxidizes SSA to succinate. In human, SSADH deficiency results in 4-hydroxybutyric aciduria, an autosomal recessive disorder due to an accumulation of GABA and 4-hydroxybutyric acid in the CNS. We already identified SSADH gene on human chromosome 6p22 and characterized the coding region. Furthermore, we described the first two mutations causing the disease. We report here the complete cDNA and genomic structure of the gene. A single transcription start site was identified by RNase protection 122 bp upstream of the ATG. EST database search and reporter gene constructs of the 3(') genomic region showed that the two major SSADH mRNA isoforms are due to alternative polyadenylation sites. The two mRNAs of 1827 and 5225 nt were analyzed for differential stability and translation efficiency. The analysis of mRNA turnover showed that both SSADH transcripts are equally stable. Similarly, a measurement of polysomal association capability of the two GFP-SSADH reporter mRNAs (containing the 3' UTR regions of the two SSADH mRNAs) did not reveal any difference. However, we cannot exclude the fact that differential properties could be restricted to particular physiological conditions and/or specific tissues. We have also identified an alternatively spliced small exon, which may lead to a novel isoform of the enzyme. Furthermore, we report here on naturally occurring missense variants, which may significantly contribute to inter-individual variation of SSADH activity, possibly influencing GABA and GHB endogenous levels.


Asunto(s)
Aldehído Oxidorreductasas/genética , Empalme Alternativo/genética , Genoma Humano , Regiones Promotoras Genéticas , Regiones no Traducidas 3' , Aldehído Oxidorreductasas/deficiencia , Northern Blotting , Variación Genética , Humanos , Hidroxibutiratos/orina , Isoenzimas/genética , Biosíntesis de Proteínas , Análisis de Secuencia de ADN , Succionato-Semialdehído Deshidrogenasa , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA