Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(28): eadg1421, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996019

RESUMEN

Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene (Ube3a) affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of Ube3a via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases. Here, we test the hypothesis that increased dosage of Ube3a may influence autism-relevant phenotypes in a sex-biased manner. We show that mice with extra copies of Ube3a exhibit sex-biasing effects on brain connectomics and autism-relevant behaviors. These effects are associated with transcriptional dysregulation of autism-associated genes, as well as genes differentially expressed in 15q duplication and in autistic people. Increased Ube3a dosage also affects expression of genes on the X chromosome, genes influenced by sex steroid hormone, and genes sex-differentially regulated by transcription factors. These results suggest that Ube3a overdosage can contribute to sex bias in neurodevelopmental conditions via influence on sex-differential mechanisms.


Asunto(s)
Trastorno Autístico , Transcriptoma , Ubiquitina-Proteína Ligasas , Animales , Masculino , Femenino , Trastorno Autístico/genética , Ratones , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Conducta Animal , Caracteres Sexuales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad
2.
Cell Rep ; 43(5): 114112, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38676925

RESUMEN

Recent findings show that effective integration of novel information in the brain requires coordinated processes of homo- and heterosynaptic plasticity. In this work, we hypothesize that activity-dependent remodeling of the peri-synaptic extracellular matrix (ECM) contributes to these processes. We show that clusters of the peri-synaptic ECM, recognized by CS56 antibody, emerge in response to sensory stimuli, showing temporal and spatial coincidence with dendritic spine plasticity. Using CS56 co-immunoprecipitation of synaptosomal proteins, we identify several molecules involved in Ca2+ signaling, vesicle cycling, and AMPA-receptor exocytosis, thus suggesting a role in long-term potentiation (LTP). Finally, we show that, in the CA1 hippocampal region, the attenuation of CS56 glycoepitopes, through the depletion of versican as one of its main carriers, impairs LTP and object location memory in mice. These findings show that activity-dependent remodeling of the peri-synaptic ECM regulates the induction and consolidation of LTP, contributing to hippocampal-dependent memory.


Asunto(s)
Matriz Extracelular , Potenciación a Largo Plazo , Memoria , Plasticidad Neuronal , Animales , Matriz Extracelular/metabolismo , Potenciación a Largo Plazo/fisiología , Ratones , Plasticidad Neuronal/fisiología , Memoria/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Ratones Endogámicos C57BL , Masculino , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Hipocampo/metabolismo , Hipocampo/fisiología
3.
Neuroscience ; 546: 63-74, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38537894

RESUMEN

GABAergic interneurons and perineuronal nets (PNNs) are important regulators of plasticity throughout life and their dysfunction has been implicated in the pathogenesis of several neuropsychiatric conditions, including autism spectrum disorders (ASD). PNNs are condensed portions of the extracellular matrix (ECM) that are crucial for neural development and proper formation of synaptic connections. We previously showed a reduced expression of GABAergic interneuron markers in the hippocampus and somatosensory cortex of adult mice lacking the Engrailed2 gene (En2-/- mice), a mouse model of ASD. Since alterations in PNNs have been proposed as a possible pathogenic mechanism in ASD, we hypothesized that the PNN dysfunction may contribute to the neural and behavioral abnormalities of En2-/- mice. Here, we show an increase in the PNN fluorescence intensity, evaluated by Wisteria floribunda agglutinin, in brain regions involved in social behavior and somatosensory processing. In addition, we found that En2-/- mice exhibit altered texture discrimination through whiskers and display a marked decrease in the preference for social novelty. Our results raise the possibility that altered expression of PNNs, together with defects of GABAergic interneurons, might contribute to the pathogenesis of social and sensory behavioral abnormalities.


Asunto(s)
Proteínas de Homeodominio , Ratones Noqueados , Proteínas del Tejido Nervioso , Lectinas de Plantas , Conducta Social , Vibrisas , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Masculino , Ratones Endogámicos C57BL , Matriz Extracelular/metabolismo , Interneuronas/metabolismo , Modelos Animales de Enfermedad , Ratones , Corteza Somatosensorial/metabolismo , Discriminación en Psicología/fisiología , Receptores N-Acetilglucosamina/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Encéfalo/metabolismo , Encéfalo/patología
4.
Neuroscience ; 531: 75-85, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37699442

RESUMEN

Sensory difficulties represent a crucial issue in the life of autistic individuals. The diagnostic and statistical manual of mental disorders describes both hyper- and hypo-responsiveness to sensory stimulation as a criterion for the diagnosis autism spectrum disorders (ASD). Among the sensory domain affected in ASD, altered responses to tactile stimulation represent the most commonly reported sensory deficits. Although tactile abnormalities have been reported in monogenic cohorts of patients and genetic mouse models of ASD, the underlying mechanisms are still unknown. Traditionally, autism research has focused on the central nervous system as the target to infer the neurobiological bases of such tactile abnormalities. Nonetheless, the peripheral nervous system represents the initial site of processing of sensory information and a potential site of dysfunction in the sensory cascade. Here we investigated the gene expression deregulation in the trigeminal ganglion (which directly receives tactile information from whiskers) in two genetic models of syndromic autism (Shank3b and Cntnap2 mutant mice) at both adult and juvenile ages. We found several neuronal and non-neuronal markers involved in inhibitory, excitatory, neuroinflammatory and sensory neurotransmission to be differentially regulated within the trigeminal ganglia of both adult and juvenile Shank3b and Cntnap2 mutant mice. These results may help in disentangling the multifaced complexity of sensory abnormalities in autism and open avenues for the development of peripherally targeted treatments for tactile sensory deficits exhibited in ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Humanos , Ratones , Trastorno del Espectro Autista/genética , Perfilación de la Expresión Génica , Tacto/fisiología , Ganglio del Trigémino
5.
Toxins (Basel) ; 15(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37755976

RESUMEN

Botulinum neurotoxins (BoNTs) are zinc endopeptidases produced by the Clostridium genus of anerobic bacteria, largely known for their ability to cleave synaptic proteins, leading to neuromuscular paralysis. In the central nervous system, BoNTs are known to block the release of glutamate neurotransmitter, and for this reason, researchers explored the possible therapeutic action in disorders characterized by neuronal hyperactivity, such as epilepsy. Thus, using multidisciplinary approaches and models of experimental epilepsy, we investigated the pharmacological potential of BoNT/E serotype. In this review, written in memory of Prof. Matteo Caleo, a pioneer in these studies, we go back over the hypotheses and experimental approaches that led us to the conclusion that intrahippocampal administration of BoNT/E (i) displays anticonvulsant effects if prophylactically delivered in a model of acute generalized seizures; (ii) does not have any antiepileptogenic action after the induction of status epilepticus; (iii) reduces frequency of spontaneous seizures in a model of recurrent seizures if delivered during the chronic phase but in a transient manner. Indeed, the control on spontaneous seizures stops when BoNT/E effects are off (few days), thus limiting its pharmacological potential in humans.

6.
eNeuro ; 10(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37648448

RESUMEN

Understanding the neural basis of emotions is a critical step to uncover the biological substrates of neuropsychiatric disorders. To study this aspect in freely behaving mice, neuroscientists have relied on the observation of ethologically relevant bodily cues to infer the affective content of the subject, both in neutral conditions or in response to a stimulus. The best example of that is the widespread assessment of freezing in experiments testing both conditioned and unconditioned fear responses. While robust and powerful, these approaches come at a cost: they are usually confined within selected time windows, accounting for only a limited portion of the complexity of emotional fluctuation. Moreover, they often rely on visual inspection and subjective judgment, resulting in inconsistency across experiments and questionable result interpretations. To overcome these limitations, novel tools are arising, fostering a new avenue in the study of the mouse naturalistic behavior. In this work we developed a computational tool [stimulus-evoked behavioral tracking in 3D for rodents (SEB3R)] to automate and standardize an ethologically driven observation of freely moving mice. Using a combination of machine learning-based behavioral tracking and unsupervised cluster analysis, we identified statistically meaningful postures that could be used for empirical inference on a subsecond scale. We validated the efficacy of this tool in a stimulus-driven test, the whisker nuisance (WN) task, where mice are challenged with a prolonged and invasive whisker stimulation, showing that identified postures can be reliably used as a proxy for stimulus-driven fearful and explorative behaviors.


Asunto(s)
Emociones , Miedo , Animales , Ratones , Conducta Exploratoria , Postura , Cinésica
7.
Eur J Neurosci ; 58(7): 3595-3604, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37649449

RESUMEN

Many clinical and research efforts aim to develop antidepressant drugs for those suffering from major depressive disorder (MDD). Yet, even today, the available treatments are suboptimal and unpredictable, with a significant proportion of patients enduring multiple drug attempts and adverse side effects before a successful response, and, for many patients, no response at all. Thus, a clearer understanding of the mechanisms underlying MDD is necessary. In the 'Brain Development and Disease' class of our Master's program in Cognitive Sciences, we ask students to collect data about the expression of a gene whose altered expression and/or function is related to a brain disorder. The students' final exam assignment consists of writing a research article in which the collected data are discussed in relation to the relevant disorder. In the course of one of these assignments, we identified the FKBP5 gene as a key player uniting two major hypotheses of MDD pathogenesis and treatment response. FKBP5 controls biological processes including immunoregulation and glucocorticoid function, both of which are separately implicated in the development and prognosis of MDD. Gene expression analyses from the human, non-human primate and mouse Allen Brain Atlases revealed that FKBP5 is expressed in brain regions involved in MDD, particularly at ages susceptible to early-life stressors. Data re-analysis from published studies confirmed that FKBP5 expression is upregulated in relevant brain regions in human MDD and preclinical mouse models of MDD. Our experience shows that classes engaging students in data collection and analysis projects may effectively result in novel data-driven hypotheses.

8.
Genes (Basel) ; 15(1)2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38254951

RESUMEN

Autism spectrum disorder (ASD) is a common neurodevelopmental condition affecting ~1% of people worldwide. Core ASD features present with impaired social communication abilities, repetitive and stereotyped behaviors, and atypical sensory responses and are often associated with a series of comorbidities. Among these, epilepsy is frequently observed. The co-occurrence of ASD and epilepsy is currently thought to result from common abnormal neurodevelopmental pathways, including an imbalanced excitation/inhibition ratio. However, the pathological mechanisms involved in ASD-epilepsy co-morbidity are still largely unknown. Here, we propose a research protocol aiming to investigate electrophysiological and genetic features in subjects with ASD and epilepsy. This study will include a detailed electroencephalographic (EEG) and blood transcriptomic characterization of subjects with ASD with and without epilepsy. The combined approach of EEG and transcriptomic studies in the same subjects will contribute to a novel stratification paradigm of the heterogeneous ASD population based on quantitative gene expression and neurophysiological biomarkers. In addition, our protocol has the potential to indicate new therapeutic options, thus amending the current condition of absence of data and guidelines for the treatment of ASD with epilepsy.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Humanos , Trastorno del Espectro Autista/genética , Epilepsia/genética , Investigación , Electroencefalografía , Perfilación de la Expresión Génica
10.
Front Cell Neurosci ; 16: 863866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465609

RESUMEN

Postnatal development of the brain is characterized by sensitive windows during which, local circuitry are drastically reshaped by life experiences. These critical periods (CPs) occur at different time points for different brain functions, presenting redundant physiological changes in the underlying brain regions. Although circuits malleability during CPs provides a valuable window of opportunity for adaptive fine-tuning to the living environment, this aspect of neurodevelopment also represents a phase of increased vulnerability for the development of a variety of disorders. Consistently, accumulating epidemiological studies point to adverse childhood experience as a major risk factor for many medical conditions, especially stress- and anxiety-related conditions. Thanks to creative approaches to manipulate rodents' rearing environment, neurobiologist have uncovered a pivotal interaction between CPs and early-life experiences, offering an interesting landscape to improve our understanding of brain disorders. In this short review, we discuss how early-life experience impacts cellular and molecular players involved in CPs of development, translating into long-lasting behavioral consequences in rodents. Bringing together findings from multiple laboratories, we delineate a unifying theory in which systemic factors dynamically target the maturation of brain functions based on adaptive needs, shifting the balance between resilience and vulnerability in response to the quality of the rearing environment.

11.
J Neuroimmunol ; 367: 577870, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35468417

RESUMEN

Immune system dysfunction has been described in autism spectrum disorder. Here we tested the hypothesis that cerebellar defects are accompanied by immune dysfunction in adult mice lacking the autism-candidate gene Engrailed 2 (En2). Gene ontology analyses revealed that biological processes related to immune function were over-represented in the cerebellar transcriptome of En2-/- mice. Pro-inflammatory molecules and chemokines were reduced in the En2-/- cerebellum compared to controls. Conversely, pro-inflammatory molecules were increased in the peripheral blood of mutant mice. Our results suggest a link between immune dysfunction and cerebellar defects detected in En2-/- mice.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Proteínas de Homeodominio , Proteínas del Tejido Nervioso , Animales , Trastorno Autístico/genética , Cerebelo/inmunología , Cerebelo/fisiopatología , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética
12.
Neurobiol Dis ; 169: 105742, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483565

RESUMEN

Sensory abnormalities are a common feature in autism spectrum disorders (ASDs). Tactile responsiveness is altered in autistic individuals, with hypo-responsiveness being associated with the severity of ASD core symptoms. Similarly, sensory abnormalities have been described in mice lacking ASD-associated genes. Loss-of-function mutations in CNTNAP2 result in cortical dysplasia-focal epilepsy syndrome (CDFE) and autism. Likewise, Cntnap2-/- mice show epilepsy and deficits relevant with core symptoms of human ASDs, and are considered a reliable model to study ASDs. Altered synaptic transmission and synchronicity found in the cerebral cortex of Cntnap2-/- mice would suggest a network dysfunction. Here, we investigated the neural substrates of whisker-dependent responses in Cntnap2+/+ and Cntnap2-/- adult mice. When compared to controls, Cntnap2-/- mice showed focal hyper-connectivity within the primary somatosensory cortex (S1), in the absence of altered connectivity between S1 and other somatosensory areas. This data suggests the presence of impaired somatosensory processing in these mutants. Accordingly, Cntnap2-/- mice displayed impaired whisker-dependent discrimination in the textured novel object recognition test (tNORT) and increased c-fos mRNA induction within S1 following whisker stimulation. S1 functional hyperconnectivity might underlie the aberrant whisker-dependent responses observed in Cntnap2-/- mice, indicating that Cntnap2 mice are a reliable model to investigate sensory abnormalities that characterize ASDs.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Animales , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Corteza Cerebral , Proteínas de la Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , Corteza Somatosensorial , Vibrisas
13.
Cereb Cortex ; 32(14): 3042-3056, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34791077

RESUMEN

Abnormal tactile response is an integral feature of Autism Spectrum Disorders (ASDs), and hypo-responsiveness to tactile stimuli is often associated with the severity of ASDs core symptoms. Patients with Phelan-McDermid syndrome (PMS), caused by mutations in the SHANK3 gene, show ASD-like symptoms associated with aberrant tactile responses. The neural underpinnings of these abnormalities are still poorly understood. Here we investigated, in Shank3b-/- adult mice, the neural substrates of whisker-guided behaviors, a key component of rodents' interaction with the surrounding environment. We assessed whisker-dependent behaviors in Shank3b-/- adult mice and age-matched controls, using the textured novel object recognition (tNORT) and whisker nuisance (WN) test. Shank3b-/- mice showed deficits in whisker-dependent texture discrimination in tNORT and behavioral hypo-responsiveness to repetitive whisker stimulation in WN. Sensory hypo-responsiveness was accompanied by a significantly reduced activation of the primary somatosensory cortex (S1) and hippocampus, as measured by c-fos mRNA induction, a proxy of neuronal activity following whisker stimulation. Moreover, resting-state fMRI showed a significantly reduced S1-hippocampal connectivity in Shank3b mutants, in the absence of altered connectivity between S1 and other somatosensory areas. Impaired crosstalk between hippocampus and S1 might underlie Shank3b-/- hypo-reactivity to whisker-dependent cues, highlighting a potentially generalizable somatosensory dysfunction in ASD.


Asunto(s)
Trastornos de los Cromosomas , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso , Vibrisas , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Corteza Somatosensorial/metabolismo , Vibrisas/fisiología
15.
Antioxidants (Basel) ; 9(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256243

RESUMEN

Autism spectrum disorders (ASD) are a group of neurodevelopmental syndromes with both genetic and environmental origins. Several recent studies have shown that inflammation and oxidative stress may play a key role in supporting the pathogenesis and the severity of ASD. Thus, the administration of anti-inflammatory and antioxidant molecules may represent a promising strategy to counteract pathological behaviors in ASD patients. In the current review, results from recent literature showing how natural antioxidants may be beneficial in the context of ASD will be discussed. Interestingly, many antioxidant molecules available in nature show anti-inflammatory activity. Thus, after introducing ASD and the role of the vitamin E/vitamin C/glutathione network in scavenging intracellular reactive oxygen species (ROS) and the impairments observed with ASD, we discuss the concept of functional food and nutraceutical compounds. Furthermore, the effects of well-known nutraceutical compounds on ASD individuals and animal models of ASD are summarized. Finally, the importance of nutraceutical compounds as support therapy useful in reducing the symptoms in autistic people is discussed.

18.
Int J Mol Sci ; 21(9)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384730

RESUMEN

Autism Spectrum Disorders (ASDs) represent a group of neurodevelopmental disorders associated with social and behavioral impairments. Although dysfunctions in several signaling pathways have been associated with ASDs, very few molecules have been identified as potentially effective drug targets in the clinic. Classically, research in the ASD field has focused on the characterization of pathways involved in neural development and synaptic plasticity, which support the pathogenesis of this group of diseases. More recently, immune system dysfunctions have been observed in ASD. In addition, high levels of reactive oxygen species (ROS), which cause oxidative stress, are present in ASD patients. In this review, we will describe the major alterations in the expression of genes coding for enzymes involved in the ROS scavenging system, in both ASD patients and ASD mouse models. In addition, we will discuss, in the context of the most recent literature, the possibility that oxidative stress, inflammation and immune system dysfunction may be connected to, and altogether support, the pathogenesis and/or severity of ASD. Finally, we will discuss the possibility of novel treatments aimed at counteracting the interplay between ROS and inflammation in people with ASD.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Quimiocinas/metabolismo , Interleucinas/metabolismo , Estrés Oxidativo , Animales , Trastorno del Espectro Autista/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Humanos
19.
Cereb Cortex ; 30(9): 5147-5165, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32383447

RESUMEN

Foxg1 is an ancient transcription factor gene orchestrating a number of neurodevelopmental processes taking place in the rostral brain. In this study, we investigated its impact on neocortical activity. We found that mice overexpressing Foxg1 in neocortical pyramidal cells displayed an electroencephalography (EEG) with increased spike frequency and were more prone to kainic acid (KA)-induced seizures. Consistently, primary cultures of neocortical neurons gain-of-function for Foxg1 were hyperactive and hypersynchronized. That reflected an unbalanced expression of key genes encoding for ion channels, gamma aminobutyric acid and glutamate receptors, and was likely exacerbated by a pronounced interneuron depletion. We also detected a transient Foxg1 upregulation ignited in turn by neuronal activity and mediated by immediate early genes. Based on this, we propose that even small changes of Foxg1 levels may result in a profound impact on pyramidal cell activity, an issue relevant to neuronal physiology and neurological aberrancies associated to FOXG1 copy number variations.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Neocórtex/fisiología , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo , Animales , Variaciones en el Número de Copia de ADN , Electroencefalografía , Factores de Transcripción Forkhead/genética , Ratones , Proteínas del Tejido Nervioso/genética , Convulsiones/genética , Convulsiones/metabolismo , Regulación hacia Arriba
20.
Genes (Basel) ; 11(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244845

RESUMEN

Impaired function of GABAergic interneurons, and the subsequent alteration of excitation/inhibition balance, is thought to contribute to autism spectrum disorders (ASD). Altered numbers of GABAergic interneurons and reduced expression of GABA receptors has been detected in the brain of ASD subjects and mouse models of ASD. We previously showed a reduced expression of GABAergic interneuron markers parvalbumin (PV) and somatostatin (SST) in the forebrain of adult mice lacking the Engrailed2 gene (En2-/- mice). Here, we extended this analysis to postnatal day (P) 30 by using in situ hybridization, immunohistochemistry, and quantitative RT-PCR to study the expression of GABAergic interneuron markers in the hippocampus and somatosensory cortex of En2-/- and wild type (WT) mice. In addition, GABA receptor subunit mRNA expression was investigated by quantitative RT-PCR in the same brain regions of P30 and adult En2-/- and WT mice. As observed in adult animals, PV and SST expression was decreased in En2-/- forebrain of P30 mice. The expression of GABA receptor subunits (including the ASD-relevant Gabrb3) was also altered in young and adult En2-/- forebrain. Our results suggest that GABAergic neurotransmission deficits are already evident at P30, confirming that neurodevelopmental defects of GABAergic interneurons occur in the En2 mouse model of ASD.


Asunto(s)
Trastorno del Espectro Autista/patología , Neuronas GABAérgicas/patología , Regulación del Desarrollo de la Expresión Génica , Hipocampo/patología , Proteínas de Homeodominio/fisiología , Proteínas del Tejido Nervioso/fisiología , Receptores de GABA/metabolismo , Corteza Somatosensorial/patología , Animales , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/metabolismo , Modelos Animales de Enfermedad , Femenino , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Interneuronas/patología , Masculino , Ratones , Ratones Noqueados , Parvalbúminas/metabolismo , Corteza Somatosensorial/metabolismo , Somatostatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...