Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 18(4): 406-414, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-27862774

RESUMEN

Three dyes for p-type dye-sensitised solar cells containing a novel doubly anchored pyrrole donor group were synthesised and their solar cell performances were evaluated. Dye 1 was comprised of a phenyl-thiophene linker and a maleonitrile acceptor, which has been established as an effective motif in other push-pull dyes. Two boron dipyrromethane analogues, dyes 2 and 3, were made with different linker groups to compare their effect on the behaviour of these dyes adsorbed onto nickel oxide (dye|NiO) under illumination. The photoexcited states of dye|NiO were probed using resonance Raman spectroscopy and compared to dyes anchored using the conventional 4-aminobenzoic acid moiety (P1 and 4). All three components, the anchor, the linker and the acceptor group were found to alter both the electronic structure following excitation and the overall solar cell performance. The bodipy acceptor gave a better performance than the maleonitrile acceptor when the pyrrole anchor was used, which is the opposite of the triphenylamine push-pull dyes. The linker group was found to have a large influence on the short-circuit current and efficiency of the p-type cells constructed.

2.
Interface Focus ; 5(3): 20140083, 2015 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-26052420

RESUMEN

Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push-pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices.

3.
Phys Chem Chem Phys ; 17(12): 7823-30, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25716520

RESUMEN

The dyes bis[2,2'-bipyridine][4,4'-dicarboxy-2,2'-bipyridine]ruthenium(II) dihexafluorophosphate, [Ru(bpy)2dcb](PF6)2 (Ru1), and tris[4,4'-bis(ethylcarboxy)-2,2'-bipyridine]ruthenium(II) dihexafluorophosphate, [Ru(dceb)3](PF6)2 (Ru2), attached to NiOx nanoparticle films were investigated using transient absorption and luminescence spectroscopy. In acetonitrile solution the dyes reveal very similar physical and chemical properties, i.e. both dyes exhibit comparable ground state and long-lived, broad excited state absorption. However, when immobilized onto a NiOx surface the photophysical properties of the two dyes differ significantly. For Ru1 luminescence is observed, which decays within 18 ns and ultrafast transient absorption measurements do not show qualitative differences from the photophysics of Ru1 in solution. In contrast to this the luminescence of photoexcited Ru2 on NiOx is efficiently quenched and the ultrafast transient absorption spectra reveal the formation of oxidized nickel centres overlaid by the absorption of the reduced dye Ru2 with a characteristic time-constant of 18 ps. These findings are attributed to the different localization of the initially photoexcited state in Ru1 and Ru2. Due to the inductive effect (−I) of the carboxylic groups, the lowest energy excited state in Ru1 is localized on the dicarboxy-bipyridine ligand, which is bound to the NiOx surface. In Ru2, on the other hand, the initially populated excited state is localized on the ester-substituted ligands, which are not bound to the semiconductor surface. Hence, the excess charge density that is abstracted from the Ru-ion in the metal-to-ligand charge-transfer transition is shifted away from the NiOx surface, which ultimately facilitates hole transfer into the semiconductor.

4.
Dalton Trans ; 43(47): 17659-65, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25146602

RESUMEN

The photophysical properties of Ruthenium-bipyridine complexes bearing a bibenzimidazole ligand were investigated. The nitrogens on the bibenzimidazole-ligand were protected, by adding either a phenylene group or a 1,2-ethandiyl group, to remove the photophysical dependence of the complex on the protonation state of the bibenzimidazole ligand. This protection results in the bibenzimidazole ligand contributing to the MLCT transition, which is experimentally evidenced by (resonance) Raman scattering in concert with DFT calculations for a detailed mode assignment in the (resonance) Raman spectra.


Asunto(s)
Bencimidazoles/química , Compuestos Organometálicos/química , Piridinas/química , Rutenio/química , Ligandos , Compuestos Organometálicos/síntesis química , Procesos Fotoquímicos , Teoría Cuántica , Espectrometría Raman
5.
Chembiochem ; 14(6): 727-32, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23526760

RESUMEN

The invasive unicellular green macroalga Caulerpa taxifolia has spread dramatically in the Mediterranean Sea over the last decades. Its success is based on rapid plug formation after wounding, to prevent the loss of cell content. This quick and efficient process involves the rapid transformation of the secondary metabolite caulerpenyne to the reactive 1,4-dialdehyde oxytoxin 2, which acts as a protein crosslinker. The main metabolites of the wound plug were identified as proteins, caulerpenyne derivatives, and sulfated polysaccharides. Because of a methodological deficit, however, the detailed distribution of the compounds within the wound plug of C. taxifolia was unknown. This study demonstrates the suitability of FT-Raman spectroscopy for the noninvasive in vivo determination of caulerpenyne and its derivatives, as well as ß-carotene, from signals with special spectral features within the wound plug and the adjacent intact alga tissue, with a resolution of 100 µm. FT-Raman spectra allowed four different zones with distinct chemical compositions around the region of wounds to be characterized. Gradients of the investigated metabolites within the wound plug and the alga could be determined. Moreover, various caulerpenyne derivatives could be identified spectroscopically, and this has led to a mechanistic proposal for the internal and the external wound plug formation.


Asunto(s)
Caulerpa/química , Sesquiterpenos/química , beta Caroteno/química , Espectrometría Raman
6.
Phys Chem Chem Phys ; 14(43): 15185-90, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23034394

RESUMEN

Resonance Raman microspectroscopy is used to investigate dye-sensitized NiO(x) nanoparticle films to be used as photocathodes in tandem dye-sensitized solar cells. It is shown that rR microspectroscopy has potential for applications in quality assurance in such systems and also in integrated dye-sensitized solar cell modules. Here, ruthenium dye-sensitized NiO(x) nanoparticle layers were produced both as single and double NiO(x) films using a one or two-step deposition process, respectively. The distribution of the sensitizer on the surfaces was investigated by rR microspectroscopy. The chemical images obtained from rR microspectroscopy yield complementary information to bright field microscope pictures and provide detailed insight into the sensitization pattern e.g. in the vicinity of surface vacancies and other inhomogeneities. Furthermore, based on the mapping results the dye desorption kinetics upon addition of water has been analysed. Desorption on the single NiO(x) film is faster and more efficient than on the double film. These changes are attributed to binding sites on the NiO(x) surface that are passivated with regard to water penetration. This passivation is introduced by the second synthesis step in building the second film of NiO(x) on the glass substrate. Both findings highlight the potential of rR microspectroscopy for quality assurance of dye-sensitized solar cell electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...