Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Endocrinol ; 251(3): 195-206, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34612845

RESUMEN

Vascular reactivity of adipose tissue (AT) is hypothesized to play an important role in the development of obesity. However, the exact role of vascular reactivity in the development of obesity remains unclear. In this study, we investigated the chronological changes in vascular reactivity and the microenvironments of the visceral AT (VAT) and subcutaneous AT (SAT) in lean and obese mice. Changes in blood flow levels induced by a ß-adrenoceptor agonist (isoproterenol) were significantly lower in the VAT of the mice fed a high-fat diet (HFD) for 1 and 12 weeks than those in the VAT of the mice fed a low-fat diet (LFD) for the same period; no significant change was observed in the SAT of any mouse group, suggesting depot-specific vascular reactivity of AT. Moreover, the hypoxic area and the expression of genes associated with angiogenesis and macrophage recruitment were increased in the VAT (but not in the SAT) of mice fed an HFD for 1 week compared with mice fed an LFD. These changes occurred with no morphological changes, including those related to adipocyte size, AT vessel density, and the diameter and pericyte coverage of the endothelium, suggesting a determinant role of vascular reactivity in the type of AT remodeling. The suppression of vascular reactivity was accompanied by increased endothelin1 (Edn1) gene expression and extracellular matrix (ECM) stiffness only in the VAT, implying enhanced contractile activities of the vasculature and ECM. The results suggest a depot-specific role of vascular reactivity in AT remodeling during the development of obesity.


Asunto(s)
Grasa Intraabdominal/irrigación sanguínea , Neovascularización Patológica , Obesidad/inducido químicamente , Animales , Dieta Alta en Grasa , Masculino , Ratones , Ratones Obesos , Obesidad/patología
2.
Cell Rep ; 27(11): 3182-3198.e9, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31189104

RESUMEN

Variations in the human FTO gene have been linked to obesity and altered connectivity of the dopaminergic neurocircuitry. Here, we report that fat mass and obesity-associated protein (FTO) in dopamine D2 receptor-expressing medium spiny neurons (D2 MSNs) of mice regulate the excitability of these cells and control their striatopallidal globus pallidus external (GPe) projections. Lack of FTO in D2 MSNs translates into increased locomotor activity to novelty, associated with altered timing behavior, without impairing the ability to control actions or affecting reward-driven and conditioned behavior. Pharmacological manipulations of dopamine D1 receptor (D1R)- or D2R-dependent pathways in these animals reveal altered responses to D1- and D2-MSN-mediated control of motor output. These findings reveal a critical role for FTO to control D2 MSN excitability, their projections to the GPe, and behavioral responses to novelty.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Neuronas Dopaminérgicas/metabolismo , Conducta Exploratoria , Locomoción , Potenciales de Acción , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Neuronas Dopaminérgicas/fisiología , Femenino , Globo Pálido/citología , Globo Pálido/metabolismo , Globo Pálido/fisiología , Masculino , Ratones , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Recompensa
3.
Nat Cell Biol ; 18(3): 328-36, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26900752

RESUMEN

Activation of brown adipose tissue (BAT) controls energy homeostasis in rodents and humans and has emerged as an innovative strategy for the treatment of obesity and type 2 diabetes mellitus. Here we show that ageing- and obesity-associated dysfunction of brown fat coincides with global microRNA downregulation due to reduced expression of the microRNA-processing node Dicer1. Consequently, heterozygosity of Dicer1 in BAT aggravated diet-induced-obesity (DIO)-evoked deterioration of glucose metabolism. Analyses of differential microRNA expression during preadipocyte commitment and mouse models of progeria, longevity and DIO identified miR-328 as a regulator of BAT differentiation. Reducing miR-328 blocked preadipocyte commitment, whereas miR-328 overexpression instigated BAT differentiation and impaired muscle progenitor commitment-partly through silencing of the ß-secretase Bace1. Loss of Bace1 enhanced brown preadipocyte specification in vitro and was overexpressed in BAT of obese and progeroid mice. In vivo Bace1 inhibition delayed DIO-induced weight gain and improved glucose tolerance and insulin sensitivity. These experiments reveal Dicer1-miR-328-Bace1 signalling as a determinant of BAT function, and highlight the potential of Bace1 inhibition as a therapeutic approach to improve not only neurodegenerative diseases but also ageing- and obesity-associated impairments of BAT function.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Ácido Aspártico Endopeptidasas/genética , Diferenciación Celular/fisiología , ARN Helicasas DEAD-box/genética , MicroARNs/genética , Ribonucleasa III/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Metabolismo Energético/fisiología , Homeostasis/fisiología , Resistencia a la Insulina/fisiología , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Obesidad/genética , Obesidad/metabolismo , Ribonucleasa III/metabolismo
4.
Cell Metab ; 20(4): 678-86, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25295788

RESUMEN

Ceramides increase during obesity and promote insulin resistance. Ceramides vary in acyl-chain lengths from C14:0 to C30:0 and are synthesized by six ceramide synthase enzymes (CerS1-6). It remains unresolved whether obesity-associated alterations of specific CerSs and their defined acyl-chain length ceramides contribute to the manifestation of metabolic diseases. Here we reveal that CERS6 mRNA expression and C16:0 ceramides are elevated in adipose tissue of obese humans, and increased CERS6 expression correlates with insulin resistance. Conversely, CerS6-deficient (CerS6(Δ/Δ)) mice exhibit reduced C16:0 ceramides and are protected from high-fat-diet-induced obesity and glucose intolerance. CerS6 deletion increases energy expenditure and improves glucose tolerance, not only in CerS6(Δ/Δ) mice, but also in brown adipose tissue- (CerS6(ΔBAT)) and liver-specific (CerS6(ΔLIVER)) CerS6 knockout mice. CerS6 deficiency increases lipid utilization in BAT and liver. These experiments highlight CerS6 inhibition as a specific approach for the treatment of obesity and type 2 diabetes mellitus, circumventing the side effects of global ceramide synthesis inhibition.


Asunto(s)
Ceramidas/metabolismo , Intolerancia a la Glucosa , Esfingosina N-Aciltransferasa/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Índice de Masa Corporal , Dieta Alta en Grasa , Femenino , Humanos , Peroxidación de Lípido , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Obesidad/metabolismo , Obesidad/patología , PPAR gamma/genética , PPAR gamma/metabolismo , Esfingosina N-Aciltransferasa/deficiencia , Esfingosina N-Aciltransferasa/genética , Aumento de Peso
5.
Nat Immunol ; 15(5): 423-30, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681566

RESUMEN

Obesity and resistance to insulin are closely associated with the development of low-grade inflammation. Interleukin 6 (IL-6) is linked to obesity-associated inflammation; however, its role in this context remains controversial. Here we found that mice with an inactivated gene encoding the IL-6Rα chain of the receptor for IL-6 in myeloid cells (Il6ra(Δmyel) mice) developed exaggerated deterioration of glucose homeostasis during diet-induced obesity, due to enhanced resistance to insulin. Tissues targeted by insulin showed increased inflammation and a shift in macrophage polarization. IL-6 induced expression of the receptor for IL-4 and augmented the response to IL-4 in macrophages in a cell-autonomous manner. Il6ra(Δmyel) mice were resistant to IL-4-mediated alternative polarization of macrophages and exhibited enhanced susceptibility to lipopolysaccharide (LPS)-induced endotoxemia. Our results identify signaling via IL-6 as an important determinant of the alternative activation of macrophages and assign an unexpected homeostatic role to IL-6 in limiting inflammation.


Asunto(s)
Endotoxemia/inmunología , Resistencia a la Insulina , Interleucina-6/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Obesidad/inmunología , Animales , Células Cultivadas , Humanos , Resistencia a la Insulina/genética , Resistencia a la Insulina/inmunología , Interleucina-4/inmunología , Interleucina-6/genética , Lipopolisacáridos/inmunología , Activación de Macrófagos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Receptores de Interleucina-6/genética , Transducción de Señal/genética
6.
Nat Commun ; 5: 3427, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24619096

RESUMEN

Dysregulation of hypothalamic-pituitary-adrenal (HPA) axis activity leads to debilitating neuroendocrine or metabolic disorders such as Cushing's syndrome (CS). Glucocorticoids control HPA axis activity through negative feedback to the pituitary gland and the central nervous system (CNS). However, the cellular mechanisms involved are poorly understood, particularly in the CNS. Here we show that, in mice, selective loss of TrkB signalling in cholecystokinin (CCK)-GABAergic neurons induces glucocorticoid resistance, resulting in increased corticotrophin-releasing hormone expression, chronic hypercortisolism, adrenocortical hyperplasia, glucose intolerance and mature-onset obesity, reminiscent of the human CS phenotype. Interestingly, obesity is not due to hyperphagia or decreased energy expenditure, but is associated with increased de novo lipogenesis in the liver. Our study therefore identifies CCK neurons as a novel and critical cellular component of the HPA axis, and demonstrates the requirement of TrkB for the transmission of glucocorticoid signalling.


Asunto(s)
Colecistoquinina/metabolismo , Síndrome de Cushing/metabolismo , Neuronas GABAérgicas/metabolismo , Glicoproteínas de Membrana/metabolismo , Obesidad/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Composición Corporal/efectos de los fármacos , Calorimetría Indirecta , Colecistoquinina/genética , Síndrome de Cushing/genética , Ingestión de Alimentos/efectos de los fármacos , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Immunoblotting , Hibridación in Situ , Masculino , Glicoproteínas de Membrana/genética , Ratones , Mifepristona/farmacología , Obesidad/genética , Proteínas Tirosina Quinasas/genética
7.
Cell Metab ; 18(3): 445-55, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24011078

RESUMEN

Brown adipose tissue (BAT) is a critical regulator of glucose, lipid, and energy homeostasis, and its activity is tightly controlled by the sympathetic nervous system. However, the mechanisms underlying CNS-dependent control of BAT sympathetic nerve activity (SNA) are only partly understood. Here, we demonstrate that catecholaminergic neurons in the locus coeruleus (LC) adapt their firing frequency to extracellular glucose concentrations in a K(ATP)-channel-dependent manner. Inhibiting K(ATP)-channel-dependent control of neuronal activity via the expression of a variant K(ATP) channel in tyrosine-hydroxylase-expressing neurons and in neurons of the LC enhances diet-induced obesity in mice. Obesity results from decreased energy expenditure, lower steady-state BAT SNA, and an attenuated ability of centrally applied glucose to activate BAT SNA. This impairs the thermogenic transcriptional program of BAT. Collectively, our data reveal a role of K(ATP)-channel-dependent neuronal excitability in catecholaminergic neurons in maintaining thermogenic BAT sympathetic tone and energy homeostasis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Neuronas Colinérgicas/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Neuronas Colinérgicas/efectos de los fármacos , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Glucosa/farmacología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Obesidad/etiología , Obesidad/metabolismo , Canales de Potasio de Rectificación Interna/genética , Tirosina 3-Monooxigenasa/metabolismo
8.
Nat Neurosci ; 16(8): 1042-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23817550

RESUMEN

Dopaminergic (DA) signaling governs the control of complex behaviors, and its deregulation has been implicated in a wide range of diseases. Here we demonstrate that inactivation of the Fto gene, encoding a nucleic acid demethylase, impairs dopamine receptor type 2 (D2R) and type 3 (D3R) (collectively, 'D2-like receptor')-dependent control of neuronal activity and behavioral responses. Conventional and DA neuron-specific Fto knockout mice show attenuated activation of G protein-coupled inwardly-rectifying potassium (GIRK) channel conductance by cocaine and quinpirole. Impaired D2-like receptor-mediated autoinhibition results in attenuated quinpirole-mediated reduction of locomotion and an enhanced sensitivity to the locomotor- and reward-stimulatory actions of cocaine. Analysis of global N(6)-methyladenosine (m(6)A) modification of mRNAs using methylated RNA immunoprecipitation coupled with next-generation sequencing in the midbrain and striatum of Fto-deficient mice revealed increased adenosine methylation in a subset of mRNAs important for neuronal signaling, including many in the DA signaling pathway. Several proteins encoded by these mRNAs had altered expression levels. Collectively, FTO regulates the demethylation of specific mRNAs in vivo, and this activity relates to the control of DA transmission.


Asunto(s)
Dopamina/fisiología , Neuronas Dopaminérgicas/enzimología , Mesencéfalo/fisiología , Oxigenasas de Función Mixta/fisiología , Oxo-Ácido-Liasas/fisiología , Adenina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Animales , Cocaína/farmacología , Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/fisiología , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Metilación , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxigenasas de Función Mixta/deficiencia , Oxigenasas de Función Mixta/genética , Oxo-Ácido-Liasas/deficiencia , Oxo-Ácido-Liasas/genética , Fenotipo , Quinpirol/farmacología , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Receptores de Dopamina D2/deficiencia , Receptores de Dopamina D2/fisiología , Receptores de Dopamina D3/fisiología , Recompensa , Transducción de Señal/efectos de los fármacos
9.
PLoS One ; 8(1): e54247, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349837

RESUMEN

Obesity and associated metabolic disturbances, such as increased circulating fatty acids cause prolonged low grade activation of inflammatory signaling pathways in liver, skeletal muscle, adipose tissue and even in the CNS. Activation of inflammatory pathways in turn impairs insulin signaling, ultimately leading to obesity-associated type 2 diabetes mellitus. Conventional JNK-1 knock out mice are protected from high fat diet-induced insulin resistance, characterizing JNK-1-inhibition as a potential approach to improve glucose metabolism in obese patients. However, the cell type-specific role of elevated JNK-1 signaling as present during the course of obesity has not been fully elucidated yet. To investigate the functional contribution of altered JNK-1 activation in skeletal muscle, we have generated a ROSA26 insertion mouse strain allowing for Cre-activatable expression of a JNK-1 constitutive active construct (JNK(C)). To examine the consequence of skeletal muscle-restricted JNK-1 overactivation in the development of insulin resistance and glucose metabolism, JNK(C) mice were crossed to Mck-Cre mice yielding JNK(SM-C) mice. However, despite increased muscle-specific JNK activation, energy homeostasis and glucose metabolism in JNK(SM-C) mice remained largely unaltered compared to controls. In line with these findings, obese mice with skeletal muscle specific disruption of JNK-1, did not affect energy and glucose homeostasis. These experiments indicate that JNK-1 activation in skeletal muscle does not account for the major effects on diet-induced, JNK-1-mediated deterioration of insulin action and points towards a so far underappreciated role of JNK-1 in other tissues than skeletal muscle during the development of obesity-associated insulin resistance.


Asunto(s)
Glucosa/metabolismo , Homeostasis , Resistencia a la Insulina , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Animales , Western Blotting , Composición Corporal , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Femenino , Expresión Génica , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteína Quinasa 8 Activada por Mitógenos/genética , Obesidad/etiología , Obesidad/genética , Fosforilación , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN no Traducido , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
PLoS Genet ; 8(11): e1003021, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144624

RESUMEN

Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies caused by a dysfunction of mitochondria and raise the possibility that tau pathologies are associated with other neurodegenerative disorders caused by deficiencies in mitochondrial dynamics.


Asunto(s)
Mitocondrias , Enfermedades Neurodegenerativas , Neuronas , Atrofia Óptica Autosómica Dominante , Proteínas Represoras , Animales , Apoptosis , Proteínas de Caenorhabditis elegans , Genoma Mitocondrial , Fusión de Membrana , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Membranas Mitocondriales/metabolismo , Morfogénesis , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/metabolismo , Fosforilación , Prohibitinas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
11.
Cell Metab ; 13(6): 720-8, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21641553

RESUMEN

Dopaminergic midbrain neurons integrate signals on food palatability and food-associated reward into the complex control of energy homeostasis. To define the role of insulin receptor (IR) signaling in this circuitry, we inactivated IR signaling in tyrosine hydroxylase (Th)-expressing cells of mice (IR(ΔTh)). IR inactivation in Th-expressing cells of mice resulted in increased body weight, increased fat mass, and hyperphagia. While insulin acutely stimulated firing frequency in 50% of dopaminergic VTA/SN neurons, this response was abolished in IR(ΔTh) mice. Moreover, these mice exhibited an altered response to cocaine under food-restricted conditions. Taken together, these data provide in vivo evidence for a critical role of insulin signaling in catecholaminergic neurons to control food intake and energy homeostasis.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Homeostasis/efectos de los fármacos , Insulina/farmacología , Neuronas/metabolismo , Potenciales de Acción , Adiposidad , Animales , Calorimetría Indirecta , Catecolaminas/metabolismo , Cocaína/farmacología , Ingestión de Alimentos/genética , Expresión Génica , Hiperinsulinismo/genética , Mesencéfalo/citología , Mesencéfalo/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Neuronas/efectos de los fármacos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transducción de Señal , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
12.
Nat Cell Biol ; 13(4): 434-46, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21441927

RESUMEN

The contribution of altered post-transcriptional gene silencing to the development of insulin resistance and type 2 diabetes mellitus so far remains elusive. Here, we demonstrate that expression of microRNA (miR)-143 and 145 is upregulated in the liver of genetic and dietary mouse models of obesity. Induced transgenic overexpression of miR-143, but not miR-145, impairs insulin-stimulated AKT activation and glucose homeostasis. Conversely, mice deficient for the miR-143-145 cluster are protected from the development of obesity-associated insulin resistance. Quantitative-mass-spectrometry-based analysis of hepatic protein expression in miR-143-overexpressing mice revealed miR-143-dependent downregulation of oxysterol-binding-protein-related protein (ORP) 8. Reduced ORP8 expression in cultured liver cells impairs the ability of insulin to induce AKT activation, revealing an ORP8-dependent mechanism of AKT regulation. Our experiments provide direct evidence that dysregulated post-transcriptional gene silencing contributes to the development of obesity-induced insulin resistance, and characterize the miR-143-ORP8 pathway as a potential target for the treatment of obesity-associated diabetes.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , MicroARNs/metabolismo , Obesidad/genética , Obesidad/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Dieta , Activación Enzimática , Resistencia a la Insulina , Hígado/enzimología , Ratones , Ratones Obesos , Ratones Transgénicos , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética
13.
Cell Metab ; 12(3): 237-49, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20816090

RESUMEN

The contribution of interleukin (IL)-6 signaling in obesity-induced inflammation remains controversial. To specifically define the role of hepatic IL-6 signaling in insulin action and resistance, we have generated mice with hepatocyte-specific IL-6 receptor (IL-6R) alpha deficiency (IL-6Ralpha(L-KO) mice). These animals showed no alterations in body weight and fat content but exhibited a reduction in insulin sensitivity and glucose tolerance. Impaired glucose metabolism originated from attenuated insulin-stimulated glucose transport in skeletal muscle and fat. Surprisingly, hepatic IL-6Ralpha-disruption caused an exaggerated inflammatory response during euglycemic hyperinsulinemic clamp analysis, as revealed by increased expression of IL-6, TNF-alpha, and IL-10, as well as enhanced activation of inflammatory signaling such as phosphorylation of IkappaBalpha. Neutralization of TNF-alpha or ablation of Kupffer cells restored glucose tolerance in IL-6Ralpha(L-KO) mice. Thus, our results reveal an unexpected role for hepatic IL-6 signaling to limit hepatic inflammation and to protect from local and systemic insulin resistance.


Asunto(s)
Inflamación/metabolismo , Insulina/metabolismo , Interleucina-6/metabolismo , Hígado/citología , Hígado/patología , Transducción de Señal/fisiología , Adiposidad , Animales , Metabolismo Energético , Glucosa/metabolismo , Glucógeno/biosíntesis , Homeostasis , Humanos , Resistencia a la Insulina/fisiología , Interleucina-10/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Proc Natl Acad Sci U S A ; 107(33): 14875-80, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20679202

RESUMEN

The neuronal circuits involved in the regulation of feeding behavior and energy expenditure are soft-wired, reflecting the relative activity of the postsynaptic neuronal system, including the anorexigenic proopiomelanocortin (POMC)-expressing cells of the arcuate nucleus. We analyzed the synaptic input organization of the melanocortin system in lean rats that were vulnerable (DIO) or resistant (DR) to diet-induced obesity. We found a distinct difference in the quantitative and qualitative synaptology of POMC cells between DIO and DR animals, with a significantly greater number of inhibitory inputs in the POMC neurons in DIO rats compared with DR rats. When exposed to a high-fat diet (HFD), the POMC cells of DIO animals lost synapses, whereas those of DR rats recruited connections. In both DIO rats and mice, the HFD-triggered loss of synapses on POMC neurons was associated with increased glial ensheathment of the POMC perikarya. The altered synaptic organization of HFD-fed animals promoted increased POMC tone and a decrease in the stimulatory connections onto the neighboring neuropeptide Y (NPY) cells. Exposure to HFD was associated with reactive gliosis, and this affected the structure of the blood-brain barrier such that the POMC and NPY cell bodies and dendrites became less accessible to blood vessels. Taken together, these data suggest that consumption of an HFD has a major impact on the cytoarchitecture of the arcuate nucleus in vulnerable subjects, with changes that might be irreversible due to reactive gliosis.


Asunto(s)
Dieta , Gliosis/metabolismo , Melanocortinas/metabolismo , Obesidad/metabolismo , Sinapsis/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/patología , Núcleo Arqueado del Hipotálamo/fisiopatología , Grasas de la Dieta/efectos adversos , Femenino , Gliosis/etiología , Hipotálamo/metabolismo , Hipotálamo/patología , Hipotálamo/fisiopatología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica , Neuronas/metabolismo , Neuronas/ultraestructura , Neuropéptido Y/metabolismo , Obesidad/etiología , Proopiomelanocortina/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
15.
Proc Natl Acad Sci U S A ; 107(13): 6028-33, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20231445

RESUMEN

c-Jun N-terminal kinase (JNK) 1-dependent signaling plays a crucial role in the development of obesity-associated insulin resistance. Here we demonstrate that JNK activation not only occurs in peripheral tissues, but also in the hypothalamus and pituitary of obese mice. To resolve the importance of JNK1 signaling in the hypothalamic/pituitary circuitry, we have generated mice with a conditional inactivation of JNK1 in nestin-expressing cells (JNK1(DeltaNES) mice). JNK1(DeltaNES) mice exhibit improved insulin sensitivity both in the CNS and in peripheral tissues, improved glucose metabolism, as well as protection from hepatic steatosis and adipose tissue dysfunction upon high-fat feeding. Moreover, JNK1(DeltaNES) mice also show reduced somatic growth in the presence of reduced circulating growth hormone (GH) and insulin-like growth factor 1 (IGF1) concentrations, as well as increased thyroid axis activity. Collectively, these experiments reveal an unexpected, critical role for hypothalamic/pituitary JNK1 signaling in the coordination of metabolic/endocrine homeostasis.


Asunto(s)
Glucosa/metabolismo , Hipotálamo/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Hipófisis/metabolismo , Adiposidad/fisiología , Animales , Peso Corporal/fisiología , Grasas de la Dieta/administración & dosificación , Hormona del Crecimiento/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Ratones Obesos , Ratones Transgénicos , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Transducción de Señal , Glándula Tiroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...