Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 879: 162622, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36878296

RESUMEN

C5- and C6- unsaturated oxygenated organic compounds emitted by plants under stress like cutting, freezing or drying, known as Green Leaf Volatiles (GLVs), may clear some of the existing uncertainties in secondary organic aerosol (SOA) budget. The transformations of GLVs are a potential source of SOA components through photo-oxidation processes occurring in the atmospheric aqueous phase. Here, we investigated the aqueous photo-oxidation products from three abundant GLVs (1-penten-3-ol, (Z)-2-hexen-1-ol, and (E)-2-hexen-1-al) induced by OH radicals, carried out in a photo-reactor under simulated solar conditions. The aqueous reaction samples were analyzed using advanced hyphenated mass spectrometry techniques: capillary gas chromatography mass spectrometry (c-GC-MS); and reversed-phase liquid chromatography high resolution mass spectrometry (LC-HRMS). Using carbonyl-targeted c-GC-MS analysis, we confirmed the presence of propionaldehyde, butyraldehyde, 1-penten-3-one, and 2-hexen-1-al in the reaction samples. The LC-HRMS analysis confirmed the presence of a new carbonyl product with the molecular formula C6H10O2, which probably bears the hydroxyhexenal or hydroxyhexenone structure. Density functional theory (DFT)-based quantum calculations were used to evaluate the experimental data and obtain insight into the formation mechanism and structures of the identified oxidation products via the addition and hydrogen-abstraction pathways. DFT calculations highlighted the importance of the hydrogen abstraction pathway leading to the new product C6H10O2. Atmospheric relevance of the identified products was evaluated using a set of physical property data like Henry's law constant (HLC) and vapor pressure (VP). The unknown product of molecular formula C6H10O2 has higher HLC and lower VP than the parent GLV and thus has potential to remain in the aqueous phase leading to possible aqueous SOA formation. Other observed carbonyl products are likely first stage oxidation products and precursors of aged SOA.

2.
Anal Chem ; 94(25): 8966-8974, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35708243

RESUMEN

Atmospheric particles and droplets contain numerous organic substances, some of which form complexes with metal ions, significantly affecting bulk physicochemical properties and chemical reactivity. However, the detection and identification of complexing agents and their corresponding metal complexes remains an analytical challenge. In this study, we developed an LC/HRMS nontarget screening (NTS) approach which allows the selective detection of complexing agents in aerosol particle extracts and rainwater. To achieve this, a T-junction is installed between the LC outlet and the ion source, and a FeCl3 solution is added for postcolumn complexation. The resulting mass spectra are screened for the three characteristic iron(III)-complexes [M - H + FeCl3]-, [M - 2H + FeCl2]-, and [M - 3H + FeCl]- with mass differences (Δm/z) between the complexing agent and the iron complex of 160.8416, 124.8648, and 89.8959, respectively. Up to 29 di- or tricarboxylic acids were identified as complexing agents in aerosol particle samples from two different sites (Melpitz, Germany, and Wangdu, China) at concentrations as low as 50 nM. Thirteen complexing agents were detected even in measurements without postcolumn iron addition from complexation with background Fe3+ traces from the analytical system. At least for the highest concentrated complexing agents, the proposed screening approach can thus be exploited in a NTS approach without any device modification. Besides carboxylic acids, 4-nitrophenol and 4-nitrocatechol were identified as further complexing agents, demonstrating the applicability of the approach to other matrices and to a range of different complexing agents.


Asunto(s)
Compuestos Férricos , Hierro , Aerosoles , Ácidos Carboxílicos/química , Hierro/química , Espectrometría de Masas/métodos
3.
Environ Sci Technol ; 55(12): 7818-7830, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34019409

RESUMEN

During haze periods in the North China Plain, extremely high NO concentrations have been observed, commonly exceeding 1 ppbv, preventing the classical gas-phase H2O2 formation through HO2 recombination. Surprisingly, H2O2 mixing ratios of about 1 ppbv were observed repeatedly in winter 2017. Combined field observations and chamber experiments reveal a photochemical in-particle formation of H2O2, driven by transition metal ions (TMIs) and humic-like substances (HULIS). In chamber experiments, steady-state H2O2 mixing ratios of 116 ± 83 pptv were observed upon the irradiation of TMI- and HULIS-containing particles. Correspondingly, H2O2 formation rates of about 0.2 ppbv h-1 during the initial irradiation periods are consistent with the H2O2 rates observed in the field. A novel chemical mechanism was developed explaining the in-particle H2O2 formation through a sequence of elementary photochemical reactions involving HULIS and TMIs. Dedicated box model studies of measurement periods with relative humidity >50% and PM2.5 ≥ 75 µg m-3 agree with the observed H2O2 concentrations and time courses. The modeling results suggest about 90% of the particulate sulfate to be produced from the SO2 reaction with OH and HSO3- oxidation by H2O2. Overall, under high pollution, the H2O2-caused sulfate formation rate is above 250 ng m-3 h-1, contributing to the sulfate formation by more than 70%.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Sustancias Húmicas/análisis , Peróxido de Hidrógeno , Material Particulado/análisis , Sulfatos/análisis
4.
J Sep Sci ; 44(12): 2343-2357, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33822470

RESUMEN

A method using ion chromatography coupled to high-resolution Orbitrap mass spectrometry was developed to quantify highly-polar organic compounds in aqueous filter extracts of atmospheric particles. In total, 43 compounds, including short-chain carboxylic acids, terpene-derived acids, organosulfates, and inorganic anions were separated within 33 min by a KOH gradient. Ionization by electrospray was maximized by adding 100 µL min-1 isopropanol as post-column solvent and optimizing the ion source settings. Detection limits (S/N ≥ 3) were in the range of 0.075-25 µg L-1 and better than previously reported for 22 compounds. Recoveries of extraction typically range from 85 to 117%. The developed method was applied to three ambient samples, including two arctic flight samples, and one sample from Melpitz, a continental backround research site. A total of 32 different compounds were identified for all samples. From the arctic flight samples, organic tracers could be quantified for the first time with concentrations ranging from 0.1 to 17.8 ng m-3 . Due to the minimal sample preparation, the beneficial figures of merit, and the broad range of accessible compounds, including very polar ones, the new method offers advantages over existing ones and enables a detailed analysis of organic marker compounds in atmospheric aerosol particles.

5.
Environ Sci Technol ; 54(7): 3767-3782, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32157872

RESUMEN

Organosulfates (OSs), also referred to as organic sulfate esters, are well-known and ubiquitous constituents of atmospheric aerosol particles. Commonly, they are assumed to form upon mixing of air masses of biogenic and anthropogenic origin, that is, through multiphase reactions between organic compounds and acidic sulfate particles. However, in contrast to this simplified picture, recent studies suggest that OSs may also originate from purely anthropogenic precursors or even directly from biomass and fossil fuel burning. Moreover, besides classical OS formation pathways, several alternative routes have been discovered, suggesting that OS formation possibly occurs through a wider variety of formation mechanisms in the atmosphere than initially expected. During the past decade, OSs have reached a constantly growing attention within the atmospheric science community with evermore studies reporting on large numbers of OS species in ambient aerosol. Nonetheless, estimates on OS concentrations and implications on atmospheric physicochemical processes are still connected to large uncertainties, calling for combined field, laboratory, and modeling studies. In this Critical Review, we summarize the current state of knowledge in atmospheric OS research, discuss unresolved questions, and outline future research needs, also in view of reductions of anthropogenic sulfur dioxide (SO2) emissions. Particularly, we focus on (1) field measurements of OSs and measurement techniques, (2) formation pathways of OSs and their atmospheric relevance, (3) transformation, reactivity, and fate of OSs in atmospheric particles, and (4) modeling efforts of OS formation and their global abundance.


Asunto(s)
Atmósfera , Dióxido de Azufre , Aerosoles , Compuestos Orgánicos , Sulfatos
6.
Nat Commun ; 9(1): 3222, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089803

RESUMEN

The authors became aware of a mistake in the data displayed in the original version of the paper. Specifically, for the calculation of the total emission estimates (i.e., from an average molecular weight and summed laboratory production values for all VOCs), the authors mistakenly added seasonal estimates to the annual estimates because both values are stored in the same variable of the code. Eventually, this additional sum resulted in a doubling of emission estimates.As a result of this, the following changes have been made to the originally published version of this Article:The fifth sentence of the abstract originally read "Our results indicate global emissions of 46.4-184 Tg C yr-1 of organic vapors from the oceans into the marine atmosphere and a potential contribution to organic aerosol mass of more than 60% over the remote ocean." In the corrected version "46.4-184 Tg C yr-1" is replaced by "23.2-91.9 Tg C yr-1"The seventh sentence of the second paragraph of the Introduction originally read "We infer global emissions of 65.0-257 Tg yr-1 (46.4-184 Tg C yr-1) of organic vapors from the oceans into the marine atmosphere." In the corrected version, "65.0-257 Tg yr-1 (46.4-184 Tg C yr-1)" is replaced by "32.5-129 Tg C yr-1 (23.2-91.9 Tg C yr-1)".The last sentence of the first paragraph of the Results subheading "Marine isoprene emissions from interfacial photochemistry" originally read "In the same way, we infer total emissions of organic vapors from abiotic interfacial photochemistry in the range of 65.0-257 Tg yr-1 (46.4-184 Tg C yr-1), hence, contributing significantly to marine VOC emissions." In the corrected version, "65.0-257 Tg yr-1 (46.4-184 Tg C yr-1)" is replaced by "32.5-129 Tg C yr-1 (23.2-91.9 Tg C yr-1)".This has been corrected in both the PDF and the HTML versions of the Article. While the new estimates are lower than previously reported this error does not affect the original discussion or conclusions of the Article. The authors apologize for the confusion caused by this mistake.

7.
Nat Commun ; 9(1): 2101, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844311

RESUMEN

The surface of the oceans acts as a global sink and source for trace gases and aerosol particles. Recent studies suggest that photochemical reactions at this air/water interface produce organic vapors, enhancing particle formation in the atmosphere. However, current model calculations neglect this abiotic source of reactive compounds and account only for biological emissions. Here we show that interfacial photochemistry serves as a major abiotic source of volatile organic compounds (VOCs) on a global scale, capable to compete with emissions from marine biology. Our results indicate global emissions of 46.4-184 Tg C yr-1 of organic vapors from the oceans into the marine atmosphere and a potential contribution to organic aerosol mass of more than 60% over the remote ocean. Moreover, we provide global distributions of VOC formation potentials, which can be used as simple tools for field studies to estimate photochemical VOC emissions depending on location and season.

9.
Faraday Discuss ; 200: 59-74, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28598469

RESUMEN

Films of biogenic compounds exposed to the atmosphere are ubiquitously found on the surfaces of cloud droplets, aerosol particles, buildings, plants, soils and the ocean. These air/water interfaces host countless amphiphilic compounds concentrated there with respect to in bulk water, leading to a unique chemical environment. Here, photochemical processes at the air/water interface of biofilm-containing solutions were studied, demonstrating abiotic VOC production from authentic biogenic surfactants under ambient conditions. Using a combination of online-APCI-HRMS and PTR-ToF-MS, unsaturated and functionalized VOCs were identified and quantified, giving emission fluxes comparable to previous field and laboratory observations. Interestingly, VOC fluxes increased with the decay of microbial cells in the samples, indicating that cell lysis due to cell death was the main source for surfactants and VOC production. In particular, irradiation of samples containing solely biofilm cells without matrix components exhibited the strongest VOC production upon irradiation. In agreement with previous studies, LC-MS measurements of the liquid phase suggested the presence of fatty acids and known photosensitizers, possibly inducing the observed VOC production via peroxy radical chemistry. Up to now, such VOC emissions were directly accounted to high biological activity in surface waters. However, the results obtained suggest that abiotic photochemistry can lead to similar emissions into the atmosphere, especially in less biologically-active regions. Furthermore, chamber experiments suggest that oxidation (O3/OH radicals) of the photochemically-produced VOCs leads to aerosol formation and growth, possibly affecting atmospheric chemistry and climate-related processes, such as cloud formation or the Earth's radiation budget.


Asunto(s)
Tensoactivos/química , Compuestos Orgánicos Volátiles/síntesis química , Aerosoles/síntesis química , Aerosoles/química , Atmósfera/química , Procesos Fotoquímicos , Compuestos Orgánicos Volátiles/química
10.
J Mass Spectrom ; 51(2): 141-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26889930

RESUMEN

Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric-pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. [M + H](+) and [M - H](-) in the positive and the negative mode, respectively. It was found that FAPA-MS is best suited for polar analytes containing nitrogen and/or oxygen functionalities, e.g. carboxylic acids, with low molecular weights and relatively high vapor pressures. In addition, the source was used in proof-of-principle studies, illustrating the capabilities and limitations of the technique: Firstly, traces of cocaine were detected and unambiguously identified on euro banknotes using FAPA ionization in combination with tandem MS, suggesting a correlation between cocaine abundance and age of the banknote. Secondly, FAPA-MS was used for the identification of acidic marker compounds in organic aerosol samples, indicating yet-undiscovered matrix and sample surface effects of ionization pathways in the afterglow region.

11.
Environ Sci Technol ; 49(9): 5571-8, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25861027

RESUMEN

Organic compounds contribute to a major fraction of atmospheric aerosols and have significant impacts on climate and human health. However, because of their chemical complexity, their measurement remains a major challenge for analytical instrumentation. Here we present the development and characterization of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source is based on a helium glow discharge plasma, which generates excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and produces mainly intact quasimolecular ions, facilitating the interpretation of the acquired mass spectra. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng m(-3) range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region is presented. In general, the observed compounds are in agreement with previous offline studies; however, the acquisition of chemical information and compound identification is much faster. The results demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis and reveal the potential of this technique to enable new insights into aerosol formation, growth, and transformation in the atmosphere.


Asunto(s)
Aerosoles/análisis , Presión Atmosférica , Sistemas de Computación , Espectrometría de Masas/métodos , Compuestos Orgánicos/análisis , Aerosoles/química , Humanos , Iones , Compuestos Orgánicos/química
12.
Artículo en Inglés | MEDLINE | ID: mdl-24881453

RESUMEN

We present the development and characterization of a combination of a micro-orifice volatilization impactor (MOVI) and an ion trap mass spectrometer (IT/MS) with an atmospheric-pressure chemical ionization (APCI) source. The MOVI is a multi-jet impactor with 100 nozzles, allowing the collection of aerosol particles by inertial impaction on a deposition plate. The pressure drop behind the nozzles is approximately 5%, resulting in a pressure of 96kPa on the collection surface for ambient pressures of 101.3 kPa. The cut-point diameter (diameter of 50% collection efficiency) is at 0.13 microm for a sampling flow rate of 10 L min(-1). After the collection step, aerosol particles are evaporated by heating the impaction surface and transferred into the APCI-IT/MS for detection of the analytes. APCI was used in the negative ion mode to detect predominantly mono- and dicarboxylic acids, which are major oxidation products of biogenic terpenes. The MOVI-APCI-IT/MS instrument was used for the analysis of laboratory-generated secondary organic aerosol (SOA), which was generated by ozonolysis of alpha-pinene in a 100 L continuous-flow reactor under dark and dry conditions. The combination of the MOVI with an APCI-IT/MS improved the detection Limits for small dicarboxylic acids, such as pinic acid, compared to online measurements by APCI-IT/MS. The Limits of detection and quantification for pinic acid were determined by external calibration to 4.4 ng and 13.2 ng, respectively. During a field campaign in the southern Rocky Mountains (USA) in summer 2011 (BEACHON-RoMBAS), the MOVI-APCI-IT/MS was applied for the analysis of ambient organic aerosols and the quantification of individual biogenic SOA marker compounds. Based on a measurement frequency of approximately 5 h, a diurnal cycle for pinic acid in the sampled aerosol particles was found with maximum concentrations at night (median: 10.1 ngm(-3)) and minimum concentrations during the day (median: 8.2 ng m(-3)), which is likely due to the partitioning behavior of pinic acid and the changing phase state of the organic aerosol particles with changing relative humidity.


Asunto(s)
Aerosoles/química , Ácidos Carboxílicos/análisis , Espectrometría de Masas/métodos , Presión Atmosférica , Monoterpenos Bicíclicos , Ácidos Carboxílicos/química , Humanos , Iones/análisis , Espectrometría de Masas/instrumentación , Monoterpenos/química , Oxidación-Reducción , Ozono/química , Terpenos/análisis , Terpenos/química , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...