Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38935893

RESUMEN

BACKGROUND: Isavuconazole is a relatively new antifungal agent indicated for the management of various invasive fungal diseases (IFDs), including invasive aspergillosis. Information on real-world experience with isavuconazole is scarce. This retrospective observational study aimed to describe the usage of isavuconazole in clinical practice with an in-depth evaluation of individual isavuconazole exposure. METHODS: Patients treated with isavuconazole were evaluated based on retrospective data, including therapeutic drug monitoring (TDM) data and efficacy and safety data. Additionally, we calculated the individual isavuconazole exposure described by the average AUC24 over the first 7 days of treatment by means of non-linear mixed-effects modelling and compared this with the currently desired lower target AUC of 60 mg·h/L. RESULTS: Ninety-nine patients treated with isavuconazole were evaluated. In our real-life cohort, isavuconazole was often deployed off-label in patients with non-classical host factors and infections with non-Aspergillus and non-Mucorales species. Isavuconazole was most often chosen for its safety profile, even after prior triazole treatment with manifestations of toxicity. TDM and subsequent dosage adjustments were frequently performed. The individual average AUC24 over 7 days was above 60 mg·h/L in 29 out of 77 (37.7%) patients. CONCLUSIONS: This overview provides practical insights that can aid clinicians in the management of their patients with IFD. Our study shows that isavuconazole was used in a diverse patient population and was well tolerated overall. Individual isavuconazole exposure reflected by the average AUC24 over the first 7 days of treatment was generally low and variable. Dosage adjustments following TDM were frequently performed. Our experience shows that isavuconazole is a feasible alternative after prior azole treatment.

2.
J Clin Pharmacol ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736038

RESUMEN

Recent studies have explored the influence of obesity and critical illness on ciprofloxacin pharmacokinetics. However, variation across the subpopulation of individuals with obesity admitted to the intensive care unit (ICU) with varying renal function remains unexamined. This study aims to characterize ciprofloxacin pharmacokinetics in ICU patients with obesity and provide dose recommendations for this special population. Individual patient data of 34 ICU patients with obesity (BMI >30 kg/m2) from four studies evaluating ciprofloxacin pharmacokinetics in ICU patients were pooled and combined with data from a study involving 10 individuals with obesity undergoing bariatric surgery. All samples were collected after intravenous administration. Non-linear mixed effects modeling and simulation were used to develop a population pharmacokinetic model and describe ciprofloxacin exposure in plasma. Model-based dose evaluations were performed using a pharmacokinetic/pharmacodynamic target of AUC/MIC >125. The data from patients with BMI ranging from 30.2 to 58.1 were best described by a two-compartment model with first-order elimination and a proportional error model. The inclusion of Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) as a covariate on clearance reduced inter-individual variability from 57.3% to 38.5% (P < .001). Neither body weight nor ICU admission significantly influenced clearance or volume of distribution. Renal function is a viable predictor for ciprofloxacin clearance in ICU patients with obesity, while critical illness and body weight do not significantly alter clearance. As such, body weight and critical illness do not need to be accounted for when dosing ciprofloxacin in ICU patients with obesity. Individuals with CKD-EPI >60 mL/min/1.73 m2 may require higher dosages for the treatment of pathogens with minimal inhibitory concentration ≥0.25 mg/L.

3.
Clin Pharmacokinet ; 63(5): 645-656, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532053

RESUMEN

BACKGROUND AND OBJECTIVE: Posaconazole is a pharmacotherapeutic pillar for prophylaxis and treatment of invasive fungal diseases. Dose individualization is of utmost importance as achieving adequate antifungal exposure is associated with improved outcome. This study aimed to select and evaluate a model-informed precision dosing strategy for posaconazole. METHODS: Available population pharmacokinetic models for posaconazole administered as a solid oral tablet were extracted from the literature and evaluated using data from a previously published prospective study combined with data collected during routine clinical practice. External evaluation and selection of the most accurate and precise model was based on graphical goodness-of-fit and predictive performance. Measures for bias and imprecision included mean percentage error (MPE) and normalized relative root mean squared error (NRMSE), respectively. Subsequently, the best-performing model was evaluated for its a posteriori fit-for-purpose and its suitability in a limited sampling strategy. RESULTS: Seven posaconazole models were evaluated using 764 posaconazole plasma concentrations from 143 patients. Multiple models showed adequate predictive performance illustrated by acceptable goodness-of-fit and MPE and NRMSE below ± 10% and ± 25%, respectively. In the fit-for-purpose analysis, the selected model showed adequate a posteriori predictive performance. Bias and imprecision were lowest in the presence of two prior measurements. Additionally, this model showed to be useful in a limited sampling strategy as it adequately predicted total posaconazole exposure from one (non-)trough concentration. CONCLUSION: We validated an MIPD strategy for posaconazole for its fit-for-purpose. Thereby, this study is an important first step towards MIPD-supported posaconazole dosage optimization with the goal to improve antifungal treatment in clinical practice.


Asunto(s)
Antifúngicos , Modelos Biológicos , Medicina de Precisión , Triazoles , Humanos , Antifúngicos/administración & dosificación , Antifúngicos/farmacocinética , Triazoles/administración & dosificación , Triazoles/farmacocinética , Triazoles/sangre , Medicina de Precisión/métodos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Administración Oral , Anciano , Estudios Prospectivos , Relación Dosis-Respuesta a Droga , Adulto Joven
4.
Med Mycol ; 62(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38444173

RESUMEN

Limited data on the clinical management of drug-drug interactions between triazoles and Cystic Fibrosis transmembrane conductance regulator (CFTR) modulators are available. We retrospectively evaluated azole target attainment and dose adaptations in patients from two Dutch CF centres concomitantly receiving triazoles and CFTR modulators. In total, 21 patients with 59 triazole trough concentrations were evaluated. Subtherapeutic concentrations were frequently observed, especially for itraconazole and voriconazole. Of the investigated antifungal agents, posaconazole appears the most preferable option. Our results emphasize the importance of adequate management of this interaction and underpin the added value of therapeutic drug monitoring of triazoles in this population.


Fungal infections are serious complications in Cystic Fibrosis (CF) patients. We evaluated patients concomitantly receiving triazoles and CF transmembrane conductance regulator modulators: subtherapeutic triazole exposure was frequently observed. Posaconazole appears the preferable antifungal agent.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/veterinaria , Estudios Retrospectivos , Triazoles/farmacología , Triazoles/uso terapéutico , Mutación
5.
J Antimicrob Chemother ; 79(4): 883-890, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38416407

RESUMEN

OBJECTIVE: To develop and validate an UPLC-MS/MS assay for simultaneous determination of the total concentration of ceftazidime, ciprofloxacin, flucloxacillin, piperacillin, tazobactam, sulfamethoxazole, N-acetyl sulfamethoxazole and trimethoprim, and the protein-unbound concentration of flucloxacillin, in human plasma to be used for research and clinical practice. METHODS: Sample pretreatment included protein precipitation with methanol. For the measurement of protein-unbound flucloxacillin, ultrafiltration was performed at physiological temperature. For all compounds, a stable isotopically labelled internal standard was used. Reliability of the results was assessed by participation in an international quality control programme. RESULTS: The assay was successfully validated according to the EMA guidelines over a concentration range of 0.5-100 mg/L for ceftazidime, 0.05-10 mg/L for ciprofloxacin, 0.4-125 mg/L for flucloxacillin, 0.2-60 mg/L for piperacillin, 0.15-30 mg/L for tazobactam, 1-200 mg/L for sulfamethoxazole and N-acetyl sulfamethoxazole, 0.05-10 mg/L for trimethoprim and 0.10-50 mg/L for unbound flucloxacillin. For measurement of total concentrations, the within- and between-day accuracy ranged from 90.0% to 109%, and 93.4% to 108%, respectively. Within- and between-day precision (variation coefficients, CVs) ranged from 1.70% to 11.2%, and 0.290% to 5.30%, respectively. For unbound flucloxacillin, within-day accuracy ranged from 103% to 106% and between-day accuracy from 102% to 105%. The within- and between-day CVs ranged from 1.92% to 7.11%. Results of the international quality control programme showed that the assay is reliable. CONCLUSIONS: The method provided reliable, precise and accurate measurement of seven commonly prescribed antibiotics, including the unbound concentration of flucloxacillin. This method is now routinely applied in research and clinical practice.


Asunto(s)
Antibacterianos , Floxacilina , Humanos , Ceftazidima , Cromatografía Liquida/métodos , Monitoreo de Drogas/métodos , Reproducibilidad de los Resultados , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem/métodos , Piperacilina , Tazobactam , Ciprofloxacina , Trimetoprim , Sulfametoxazol , Cromatografía Líquida de Alta Presión/métodos
6.
Clin Pharmacokinet ; 63(1): 79-91, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971650

RESUMEN

BACKGROUND AND OBJECTIVE: The latest vancomycin guideline recommends area under the curve (AUC)-targeted dosing and monitoring for efficacy and safety. However, guidelines for AUC-targeted starting dosing in patients with obesity and/or renal insufficiency are currently lacking. This study quantifies the pharmacokinetics (PK) of vancomycin in this population and provides AUC-targeted dosing recommendations. METHODS: Vancomycin concentrations (n = 1188) from therapeutic drug monitoring of 210 overweight and obese patients with varying degrees of renal (dys)function from the ward (74.8%) and intensive care unit (ICU, 25.2%) were pooled with published rich concentration-time data (n = 207) from 20 (morbidly) obese subjects undergoing bariatric surgery. A population model was developed using NONMEM 7.4. Stochastic simulations were performed to design dosing guidelines targeting an AUC24 between 400-600 mg·h/L. RESULTS: Vancomycin clearance (CL) was found to increase linearly with total bodyweight and with renal function (CKD-EPI) in a power relation. Additionally, CL proved 15.5% lower in ICU patients. Our model shows that, to reach the target AUC between 400 and 600 mg·h/L in the first 48 h, two loading doses are required for both continuous infusion and intermittent dosing regimens. Maintenance doses were found to require adjustment for total bodyweight, renal function, and ICU admission status. With this guideline, the median AUC24 is well within the target from the start of the treatment onwards. CONCLUSIONS: To achieve safe and effective vancomycin exposure for maintenance doses in overweight and obese patients, renal function, total bodyweight, and ICU admission status should be taken into account. TRIAL REGISTRATION: The AMIGO trial was registered in the Dutch Trial Registry [NTR6058].


Asunto(s)
Antibacterianos , Vancomicina , Humanos , Antibacterianos/farmacocinética , Área Bajo la Curva , Riñón , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Sobrepeso/complicaciones , Sobrepeso/tratamiento farmacológico , Vancomicina/farmacocinética
7.
J Antimicrob Chemother ; 78(12): 2886-2889, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37864491

RESUMEN

OBJECTIVES: To study the isavuconazole pharmacokinetics in a real-life paediatric cohort and confirm whether the isavuconazole exposures are within the adult exposure range. Furthermore, we are the first to describe unbound isavuconazole pharmacokinetics. METHODS: In this prospective, observational study, the isavuconazole dosing regimen was as follows (IV/oral/nasogastric tube): 5.4 mg/kg isavuconazole (maximum 200 mg/dose) three times daily on Days 1 and 2, followed by 5.4 mg/kg isavuconazole (maximum 200 mg/dose) once daily. At least one pharmacokinetic curve was assessed. Non-linear mixed effects modelling was used for analysis. Monte Carlo simulations were performed with the above mentioned maintenance dose for IV administrations and a weight band dosing regimen for oral/nasogastric tube administrations: I) <18 kg (100 mg daily); II) 18-37 kg (150 mg daily); III)>37 kg (200 mg daily). RESULTS: Seventeen paediatric patients with a median age of 9 years (range 1-17) and median weight of 26.0 kg (range 8.4-78.5) were evaluated. A two-compartment model describing linear pharmacokinetics of the unbound concentrations and saturable protein binding fitted the isavuconazole concentrations best. The absolute bioavailability of isavuconazole was 41.0% (95% CI: 32.4%-50.8%). The median (IQR) simulated exposures (AUC0-24h, SS) of the total isavuconazole concentrations after IV and oral/nasogastric tube administration were 87.7 mg·h/L (70.5-105.1) and 50.3 mg·h/L (39.0-62.4), respectively. The unbound isavuconazole fraction (unbound/total) ranged from 0.5% to 2.3%. CONCLUSIONS: This study revealed low bioavailability after nasogastric tube administration with opened capsules. Isavuconazole exposures were in the expected range following IV administration. Total and unbound isavuconazole pharmacokinetics were reported with a 5-fold range in the unbound fraction.


Asunto(s)
Neoplasias , Nitrilos , Adulto , Humanos , Niño , Lactante , Preescolar , Adolescente , Estudios Prospectivos , Piridinas
8.
Clin Pharmacokinet ; 62(12): 1701-1711, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37819503

RESUMEN

BACKGROUND AND OBJECTIVES: Isavuconazole is a broad-spectrum antifungal agent for the management of invasive fungal disease. Optimised drug exposure is critical for patient outcomes, specifically in the critically ill population. Solid information on isavuconazole pharmacokinetics including protein binding in patients in the intensive care unit is scarce. We aimed to describe the total and unbound isavuconazole pharmacokinetics and subsequently propose a dosage optimisation strategy. METHODS: A prospective multi-centre study in adult intensive care unit patients receiving isavuconazole was performed. Blood samples were collected on eight timepoints over one dosing interval between days 3-7 of treatment and optionally on one timepoint after discontinuation. Total and unbound isavuconazole pharmacokinetics were analysed by means of population pharmacokinetic modelling using NONMEM. The final model was used to perform simulations to assess exposure described by the area under the concentration-time curve and propose an adaptive dosing approach. RESULTS: Population pharmacokinetics of total and unbound isavuconazole were best described by an allometrically scaled two-compartment model with a saturable protein-binding model and interindividual variability on clearance and the maximum binding capacity. The median (range) isavuconazole unbound fraction was 1.65% (0.83-3.25%). After standard dosing, only 35.8% of simulated patients reached a total isavuconazole area under the concentration-time curve > 60 mg·h/L at day 14. The proposed adaptive dosing strategy resulted in an increase to 62.3% of patients at adequate steady-state exposure. CONCLUSIONS: In critically ill patients, total isavuconazole exposure is reduced and protein binding is highly variable. We proposed an adaptive dosing approach to enhance early treatment optimisation in this high-risk population. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04777058.


Asunto(s)
Antibacterianos , Enfermedad Crítica , Adulto , Humanos , Antibacterianos/farmacocinética , Enfermedad Crítica/terapia , Estudios Prospectivos , Triazoles/farmacocinética
9.
Clin Pharmacokinet ; 62(12): 1695-1699, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37819504

RESUMEN

Isavuconazole exposure-response relationships have been studied with a focus on total rather than unbound exposure, assuming a constant unbound fraction of 1%. We observed a median (range) unbound fraction of 1.59% (0.42-5.30%) in patients. This highly variable protein binding asks for re-evaluation of current pharmacokinetic and pharmacodynamic targets for isavuconazole.


Asunto(s)
Nitrilos , Piridinas , Humanos , Unión Proteica , Nitrilos/farmacocinética , Piridinas/uso terapéutico , Piridinas/farmacocinética , Triazoles/farmacocinética
10.
J Antimicrob Chemother ; 78(8): 2008-2014, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37390353

RESUMEN

BACKGROUND: The use of oral antimicrobial agents in patients with short bowel syndrome (SBS) is challenging due to the changes in gastrointestinal anatomy that may result in diminished absorption and altered drug bioavailability. Prospective studies evaluating bioavailability of antimicrobial agents after oral administration in SBS patients are lacking. OBJECTIVES: To determine the bioavailability of orally administered antimicrobial agents commonly used for treatment in SBS patients to guide clinical decision making when faced with infections. METHODS: We performed an explorative, clinical study investigating the pharmacokinetics (PK) of clindamycin, ciprofloxacin, flucloxacillin and fluconazole in SBS patients with intestinal failure. Participants received a combination of two antimicrobial agents simultaneously. To determine the oral bioavailability, participants received a single oral and IV dose of both agents on two occasions, after which they underwent intensive PK sampling on six predefined time points up to 12 hours after administration. Primary outcome was the oral bioavailability of these antimicrobial agents. Secondary outcomes were intravenous PK characteristics following non-compartmental analysis. RESULTS: Eighteen SBS patients were included: the mean (SD) age was 59 (17) years and 61% of participants were female. The median observed (IQR) bioavailability of ciprofloxacin, clindamycin, flucloxacillin and fluconazole were 36% (24-50), 93% (56-106), 50% (32-76) and 98% (61-107), respectively. CONCLUSION: The bioavailability of selected antimicrobial agents in certain patients with SBS appeared to be better than expected, providing a feasible treatment option. Due to the large observed differences between patients, therapeutic drug monitoring should be part of the treatment to safeguard adequate exposure in all patients. TRIAL REGISTRATION: Registered in the Dutch Trial Register (NL7796) and EudraCT number 2019-002587-28.


Asunto(s)
Antiinfecciosos , Síndrome del Intestino Corto , Humanos , Femenino , Persona de Mediana Edad , Masculino , Floxacilina , Clindamicina/uso terapéutico , Estudios Prospectivos , Fluconazol , Administración Oral , Ciprofloxacina
11.
J Antimicrob Chemother ; 78(5): 1219-1224, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36935381

RESUMEN

OBJECTIVES: To describe itraconazole and hydroxy-itraconazole pharmacokinetics following intravenous (IV) administration of a previously developed nanocrystal formulation (NCF) in haematopoietic cell transplant (HCT) recipients for prophylaxis of invasive fungal disease. METHODS: In a prospective Phase II study, 10 HCT recipients received itraconazole NCF administered in 2-hour infusions of 200 mg twice daily for 2 days, followed by 200 mg once daily until Day 14. Full pharmacokinetic curves were obtained on Days 7 and 14. Additional samples were collected pre- and post-infusion until Day 6, pre-infusion on Days 10 and 12, and during washout on Days 16, 17, 18, 19 and 28. Itraconazole and hydroxy-itraconazole pharmacokinetics were analysed by non-linear mixed-effects population pharmacokinetic modelling. RESULTS: Four-hundred and seventy-one itraconazole and 471 paired hydroxy-itraconazole concentrations from 10 patients were included for analysis. Data were best described by a semi-mechanistic model with central and peripheral itraconazole compartments and a hydroxy-itraconazole compartment with dissolution of itraconazole drug particles from nanocrystals and first-order distribution and elimination. The final model included interindividual variability on itraconazole clearance and hydroxy-itraconazole clearance. CONCLUSIONS: This study provides information on the pharmacokinetic properties of the itraconazole NCF useful for development of this formulation. Our results suggest that itraconazole NCF is a suitable formulation and may warrant renewal in the setting of repurposing. Our findings may be useful for the reformulation of other highly lipophilic compounds as well.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Nanopartículas , Humanos , Antifúngicos/uso terapéutico , Itraconazol , Reposicionamiento de Medicamentos , Estudios Prospectivos
13.
Clin Pharmacokinet ; 61(8): 1167-1175, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35641862

RESUMEN

BACKGROUND AND OBJECTIVE: Ciprofloxacin is a fluoroquinolone used for empirical and targeted therapy of a wide range of infections. Despite the increase in obesity prevalence, only very limited guidance is available on whether the ciprofloxacin dose needs to be adjusted when administered orally or intravenously in (morbidly) obese individuals. Our aim was to evaluate the influence of (morbid) obesity on ciprofloxacin pharmacokinetics after both oral and intravenous administration, to ultimately guide dosing in this population. METHODS: (Morbidly) obese individuals undergoing bariatric surgery received ciprofloxacin either orally (500 mg; n = 10) or intravenously (400 mg; n = 10), while non-obese participants received semi-simultaneous oral dosing of 500 mg followed by intravenous dosing of 400 mg 3 h later (n = 8). All participants underwent rich sampling (11-17 samples) for 12 h after administration. Non-linear mixed-effects modelling and simulations were performed to evaluate ciprofloxacin exposure in plasma. Prior data from the literature were subsequently included in the model to explore exposure in soft tissue in obese and non-obese patients. RESULTS: Overall, 28 participants with body weights ranging from 57 to 212 kg were recruited. No significant influence of body weight on bioavailability, clearance or volume of distribution was identified (all p > 0.01). Soft tissue concentrations were predicted to be lower in obese individuals despite similar plasma concentrations compared with non-obese individuals. CONCLUSION: Based on plasma pharmacokinetics, we found no evidence of the influence of obesity on ciprofloxacin pharmacokinetic parameters; therefore, ciprofloxacin dosages do not need to be increased routinely in obese individuals. In the treatment of infections in tissue where impaired ciprofloxacin penetration is anticipated, higher dosages may be required. TRIAL REGISTRATION: Registered in the Dutch Trial Registry (NTR6058).


Asunto(s)
Ciprofloxacina , Obesidad Mórbida , Administración Intravenosa , Ciprofloxacina/farmacocinética , Ciprofloxacina/uso terapéutico , Humanos , Infusiones Intravenosas , Estudios Prospectivos
14.
Clin Pharmacokinet ; 61(6): 907-918, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35377133

RESUMEN

BACKGROUND AND OBJECTIVES: Although dose optimization studies have been performed for piperacillin and tazobactam separately, a combined integral analysis is not yet reported. As piperacillin and tazobactam pharmacokinetics are likely to show correlation, a combined pharmacokinetic model should be preferred to account for this correlation when predicting the exposure. Therefore, the aim of this study was to describe the pharmacokinetics and evaluate different dosing regimens of piperacillin and tazobactam in critically ill patients using an integral population pharmacokinetic model in plasma and urine. METHODS: In this observational study, a total of 39 adult intensive care unit patients receiving piperacillin-tazobactam as part of routine clinical care were included. Piperacillin and tazobactam concentrations in plasma and urine were measured and analyzed using non-linear mixed-effects modeling. Monte Carlo simulations were performed to predict the concentrations for different dosing strategies and different categories of renal function. RESULTS: A combined two-compartment linear pharmacokinetic model for both piperacillin and tazobactam was developed, with an output compartment for the renally excreted fraction. The addition of 24-h urine creatinine clearance significantly improved the model fit. A dose of 12/1.5 g/24 h as a continuous infusion is sufficient to reach a tazobactam concentration above the target (2.89 mg/L) and a piperacillin concentration above the target of 100% f T>1×MIC (minimum inhibitory concentration [MIC] ≤ 16 mg/L). To reach a target of 100% f T>5×MIC with an MIC of 16 mg/L, piperacillin doses of up to 20 g/24 h are inadequate. Potential toxic piperacillin levels were reached in 19.6% and 47.8% of the population with a dose of 12 g/24 h and 20 g/24 h, respectively. CONCLUSIONS: A regular dose of 12/1.5 g/24 h is sufficient in > 90% of the critically ill population to treat infections caused by Escherichia coli and Klebsiella pneumoniae with MICs ≤ 8 mg/L. In case of infections caused by Pseudomonas aeruginosa with an MIC of 16 mg/L, there is a fine line between therapeutic and toxic exposure. Dosing guided by renal function and therapeutic drug monitoring could enhance target attainment in such cases. GOV IDENTIFIER: NCT03738683.


Asunto(s)
Enfermedad Crítica , Piperacilina , Adulto , Antibacterianos/farmacocinética , Enfermedad Crítica/terapia , Humanos , Pruebas de Sensibilidad Microbiana , Ácido Penicilánico/farmacocinética , Piperacilina/farmacocinética , Tazobactam
15.
Clin Pharmacokinet ; 61(6): 869-879, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35262847

RESUMEN

BACKGROUND AND OBJECTIVE: Previous pharmacokinetic (PK) studies of ciprofloxacin in intensive care (ICU) patients have shown large differences in estimated PK parameters, suggesting that further investigation is needed for this population. Hence, we performed a pooled population PK analysis of ciprofloxacin after intravenous administration using individual patient data from three studies. Additionally, we studied the PK differences between these studies through a post-hoc analysis. METHODS: Individual patient data from three studies (study 1, 2, and 3) were pooled. The pooled data set consisted of 1094 ciprofloxacin concentration-time data points from 140 ICU patients. Nonlinear mixed-effects modeling was used to develop a population PK model. Covariates were selected following a stepwise covariate modeling procedure. To analyze PK differences between the three original studies, random samples were drawn from the posterior distribution of individual PK parameters. These samples were used for a simulation study comparing PK exposure and the percentage of target attainment between patients of these studies. RESULTS: A two-compartment model with first-order elimination best described the data. Inter-individual variability was added to the clearance, central volume, and peripheral volume. Inter-occasion variability was added to clearance only. Body weight was added to all parameters allometrically. Estimated glomerular filtration rate on ciprofloxacin clearance was identified as the only covariate relationship resulting in a drop in inter-individual variability of clearance from 58.7 to 47.2%. In the post-hoc analysis, clearance showed the highest deviation between the three studies with a coefficient of variation of 14.3% for posterior mean and 24.1% for posterior inter-individual variability. The simulation study showed that following the same dose regimen of 400 mg three times daily, the area under the concentration-time curve of study 3 was the highest with a mean area under the concentration-time curve at 24 h of 58 mg·h/L compared with that of 47.7 mg·h/L for study 1 and 47.6 mg·h/L for study 2. Similar differences were also observed in the percentage of target attainment, defined as the ratio of area under the concentration-time curve at 24 h and the minimum inhibitory concentration. At the epidemiological cut-off minimum inhibitory concentration of Pseudomonas aeruginosa of 0.5 mg/L, percentage of target attainment was only 21%, 18%, and 38% for study 1, 2, and 3, respectively. CONCLUSIONS: We developed a population PK model of ciprofloxacin in ICU patients using pooled data of individual patients from three studies. A simple ciprofloxacin dose recommendation for the entire ICU population remains challenging owing to the PK differences within ICU patients, hence dose individualization may be needed for the optimization of ciprofloxacin treatment.


Asunto(s)
Ciprofloxacina , Cuidados Críticos , Ciprofloxacina/uso terapéutico , Simulación por Computador , Humanos , Infusiones Intravenosas , Pruebas de Sensibilidad Microbiana
16.
Clin Microbiol Infect ; 28(7): 1003-1009, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35150880

RESUMEN

OBJECTIVES: This study aimed to describe the absolute oral bioavailability of the solid oral formulation of posaconazole and the impact of severe intestinal mucositis in haematology patients. This study also aimed to describe posaconazole protein binding in haematology patients. METHODS: A pharmacokinetic study was performed of patients receiving induction chemotherapy or a haematopoietic cell transplantation who were randomized to receive 7 days of intravenous posaconazole therapy followed by 9 days of oral therapy, or vice versa. Patients received a posaconazole licensed dose until day 12, after which a reduced once-daily dose of 200 mg was given. At days 7, 12, and 16, blood samples were obtained for pharmacokinetic curves, and trough samples were collected on all other days. Total and unbound posaconazole pharmacokinetics were analyzed by population pharmacokinetic modelling. The presence of severe intestinal mucositis was assessed by plasma citrulline levels and analyzed as a binary covariate using 10 µmol/L as the cut-off. Monte Carlo simulations were performed to simulate posaconazole exposure at a steady state. RESULTS: Twenty-three patients were included for analysis, with 581 total posaconazole concentrations and 91 paired unbound concentrations. Absolute bioavailability in the final model was estimated at 51.4% (percentage relative standard error (%RSE): 56.5) and 67.6% (%RSE: 75.0) in patients with and without severe intestinal mucositis, respectively. Posaconazole unbound fraction was estimated at 2.7% (%RSE: 3.9). DISCUSSION: Posaconazole bioavailability is reduced in haematological patients with severe intestinal mucositis, requiring an increase in oral posaconazole dose to 400 mg twice daily on day 1, followed by 400 mg once daily or a switch to intravenous therapy.


Asunto(s)
Mucositis , Administración Oral , Antifúngicos , Disponibilidad Biológica , Humanos , Mucositis/inducido químicamente , Comprimidos/efectos adversos , Comprimidos/farmacocinética , Triazoles
17.
Clin Microbiol Infect ; 28(3): 446.e1-446.e7, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34245903

RESUMEN

OBJECTIVES: The aim of this study was to develop a mechanistic protein-binding model to predict the unbound flucloxacillin concentrations in different patient populations. METHODS: A mechanistic protein-binding model was fitted to the data using non-linear mixed-effects modelling. Data were obtained from four datasets, containing 710 paired total and unbound flucloxacillin concentrations from healthy volunteers, non-critically ill and critically ill patients. A fifth dataset with data from hospitalized patients was used for evaluation of our model. The predictive performance of the mechanistic model was evaluated and compared with the calculation of the unbound concentration with a fixed unbound fraction of 5%. Finally, we performed a fit-for-use evaluation, verifying whether the model-predicted unbound flucloxacillin concentrations would lead to clinically incorrect dose adjustments. RESULTS: The mechanistic protein-binding model predicted the unbound flucloxacillin concentrations more accurately than assuming an unbound fraction of 5%. The mean prediction error varied between -26.2% to 27.8% for the mechanistic model and between -30.8% to 83% for calculation with a fixed factor of 5%. The normalized root mean squared error varied between 36.8% and 69% respectively between 57.1% and 134%. Predicting the unbound concentration with the use of the mechanistic model resulted in 6.1% incorrect dose adjustments versus 19.4% if calculated with a fixed unbound fraction of 5%. CONCLUSIONS: Estimating the unbound concentration with a mechanistic protein-binding model outperforms the calculation with the use of a fixed protein binding factor of 5%, but neither demonstrates acceptable performance. When performing dose individualization of flucloxacillin, this should be done based on measured unbound concentrations rather than on estimated unbound concentrations from the measured total concentrations. In the absence of an assay for unbound concentrations, the mechanistic binding model should be preferred over assuming a fixed unbound fraction of 5%.


Asunto(s)
Antibacterianos , Floxacilina , Enfermedad Crítica , Voluntarios Sanos , Humanos , Unión Proteica
18.
J Fungi (Basel) ; 7(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34829198

RESUMEN

Effective management and treatment of fungal diseases is hampered by poor diagnosis, limited options for antifungal therapy, and the emergence of antifungal drug resistance. An understanding of molecular mechanisms contributing to resistance is essential to optimize the efficacy of currently available antifungals. In this perspective, one of the oldest antifungals, 5-fluorocytosine (5-FC), has been the focus of recent studies applying advanced genomic and transcriptomic techniques to decipher the order of events at the molecular level that lead to resistance. These studies have highlighted the complexity of resistance and provided new insights that are reviewed in the present paper.

20.
J Clin Microbiol ; 59(12): e0122921, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34495710

RESUMEN

The literature regarding COVID-19-associated pulmonary aspergillosis (CAPA) has shown conflicting observations, including survival of CAPA patients not receiving antifungal therapy and discrepancy between CAPA diagnosis and autopsy findings. To gain insight into the pathophysiology of CAPA, we performed a case-control study in which we compared Aspergillus test profiles in CAPA patients and controls in relation to intensive care unit (ICU) mortality. This was a multinational case-control study in which Aspergillus test results, use of antifungal therapy, and mortality were collected from critically ill COVID-19 patients. Patients were classified using the 2020 European Confederation for Medical Mycology and the International Society for Human and Animal Mycology (ECMM/ISHAM) consensus case definitions. We analyzed 219 critically ill COVID-19 cases, including 1 proven, 38 probable, 19 possible CAPA cases, 21 Aspergillus-colonized patients, 7 patients only positive for serum (1,3)-ß-d-glucan (BDG), and 133 cases with no evidence of CAPA. Mortality was 53.8% in CAPA patients compared to 24.1% in patients without CAPA (P = 0.001). Positive serum galactomannan (GM) and BDG were associated with increased mortality compared to serum biomarker-negative CAPA patients (87.5% versus 41.7%, P = 0.046; 90.0% versus 42.1%, P = 0.029, respectively). For each point increase in GM or 10-point BDG serum concentration, the odds of death increased (GM, odds ratio [OR] 10.208, 95% confidence interval [CI], 1.621 to 64.291, P = 0.013; BDG, OR, 1.247, 95% CI, 1.029 to 1.511, P = 0.024). CAPA is a complex disease, probably involving a continuum of respiratory colonization, tissue invasion, and angioinvasion. Serum biomarkers are useful for staging CAPA disease progression and, if positive, indicate angioinvasion and a high probability of mortality. There is need for a biomarker that distinguishes between respiratory tract colonization and tissue-invasive CAPA disease.


Asunto(s)
COVID-19 , Aspergilosis Pulmonar Invasiva , Animales , Aspergillus , Estudios de Casos y Controles , Enfermedad Crítica , Humanos , Aspergilosis Pulmonar Invasiva/diagnóstico , Mananos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...