Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Genom ; 7(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33646095

RESUMEN

The phenomenon of contact-dependent growth inhibition (CDI) and the genes required for CDI (cdiBAI) were identified and isolated in 2005 from an Escherichia coli isolate (EC93) from rats. Although the cdiBAIEC93 locus has been the focus of extensive research during the past 15 years, little is known about the EC93 isolate from which it originates. Here we sequenced the EC93 genome and find two complete and functional cdiBAI loci (including the previously identified cdi locus), both carried on a large 127 kb plasmid. These cdiBAI systems are differentially expressed in laboratory media, enabling EC93 to outcompete E. coli cells lacking cognate cdiI immunity genes. The two CDI systems deliver distinct effector peptides that each dissipate the membrane potential of target cells, although the two toxins display different toxic potencies. Despite the differential expression and toxic potencies of these CDI systems, both yielded similar competitive advantages against E. coli cells lacking immunity. This can be explained by the fact that the less expressed cdiBAI system (cdiBAIEC93-2) delivers a more potent toxin than the highly expressed cdiBAIEC93-1 system. Moreover, our results indicate that unlike most sequenced CDI+ bacterial isolates, the two cdi loci of E. coli EC93 are located on a plasmid and are expressed in laboratory media.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Proteínas de la Membrana/genética , Interacciones Microbianas , Plásmidos/metabolismo
2.
PLoS Genet ; 10(3): e1004255, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24675981

RESUMEN

Clonally derived bacterial populations exhibit significant genotypic and phenotypic diversity that contribute to fitness in rapidly changing environments. Here, we show that serial passage of Salmonella enterica serovar Typhimurium LT2 (StLT2) in broth, or within a mouse host, results in selection of an evolved population that inhibits the growth of ancestral cells by direct contact. Cells within each evolved population gain the ability to express and deploy a cryptic "orphan" toxin encoded within the rearrangement hotspot (rhs) locus. The Rhs orphan toxin is encoded by a gene fragment located downstream of the "main" rhs gene in the ancestral strain StLT2. The Rhs orphan coding sequence is linked to an immunity gene, which encodes an immunity protein that specifically blocks Rhs orphan toxin activity. Expression of the Rhs orphan immunity protein protects ancestral cells from the evolved lineages, indicating that orphan toxin activity is responsible for the observed growth inhibition. Because the Rhs orphan toxin is encoded by a fragmented reading frame, it lacks translation initiation and protein export signals. We provide evidence that evolved cells undergo recombination between the main rhs gene and the rhs orphan toxin gene fragment, yielding a fusion that enables expression and delivery of the orphan toxin. In this manner, rhs locus rearrangement provides a selective advantage to a subpopulation of cells. These observations suggest that rhs genes play important roles in intra-species competition and bacterial evolution.


Asunto(s)
Toxinas Bacterianas/genética , Evolución Molecular , Variación Genética , Salmonella typhimurium/genética , Secuencia de Aminoácidos , Animales , Toxinas Bacterianas/biosíntesis , Proliferación Celular , Regulación Bacteriana de la Expresión Génica , Aptitud Genética , Humanos , Ratones , Salmonella typhimurium/crecimiento & desarrollo
3.
PLoS Genet ; 7(8): e1002217, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21829394

RESUMEN

Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. Each CdiA protein exhibits a distinct growth inhibition activity, which resides in the polymorphic C-terminal region (CdiA-CT). CDI(+) cells also express unique CdiI immunity proteins that specifically block the activity of cognate CdiA-CT, thereby protecting the cell from autoinhibition. Here we show that many CDI systems contain multiple cdiA gene fragments that encode CdiA-CT sequences. These "orphan" cdiA-CT genes are almost always associated with downstream cdiI genes to form cdiA-CT/cdiI modules. Comparative genome analyses suggest that cdiA-CT/cdiI modules are mobile and exchanged between the CDI systems of different bacteria. In many instances, orphan cdiA-CT/cdiI modules are fused to full-length cdiA genes in other bacterial species. Examination of cdiA-CT/cdiI modules from Escherichia coli EC93, E. coli EC869, and Dickeya dadantii 3937 confirmed that these genes encode functional toxin/immunity pairs. Moreover, the orphan module from EC93 was functional in cell-mediated CDI when fused to the N-terminal portion of the EC93 CdiA protein. Bioinformatic analyses revealed that the genetic organization of CDI systems shares features with rhs (rearrangement hotspot) loci. Rhs proteins also contain polymorphic C-terminal regions (Rhs-CTs), some of which share significant sequence identity with CdiA-CTs. All rhs genes are followed by small ORFs representing possible rhsI immunity genes, and several Rhs systems encode orphan rhs-CT/rhsI modules. Analysis of rhs-CT/rhsI modules from D. dadantii 3937 demonstrated that Rhs-CTs have growth inhibitory activity, which is specifically blocked by cognate RhsI immunity proteins. Together, these results suggest that Rhs plays a role in intercellular competition and that orphan gene modules expand the diversity of toxic activities deployed by both CDI and Rhs systems.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proliferación Celular , Inhibición de Contacto/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Orden Génico , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular
4.
Nature ; 468(7322): 439-42, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21085179

RESUMEN

Bacteria have developed mechanisms to communicate and compete with one another in diverse environments. A new form of intercellular communication, contact-dependent growth inhibition (CDI), was discovered recently in Escherichia coli. CDI is mediated by the CdiB/CdiA two-partner secretion (TPS) system. CdiB facilitates secretion of the CdiA 'exoprotein' onto the cell surface. An additional small immunity protein (CdiI) protects CDI(+) cells from autoinhibition. The mechanisms by which CDI blocks cell growth and by which CdiI counteracts this growth arrest are unknown. Moreover, the existence of CDI activity in other bacteria has not been explored. Here we show that the CDI growth inhibitory activity resides within the carboxy-terminal region of CdiA (CdiA-CT), and that CdiI binds and inactivates cognate CdiA-CT, but not heterologous CdiA-CT. Bioinformatic and experimental analyses show that multiple bacterial species encode functional CDI systems with high sequence variability in the CdiA-CT and CdiI coding regions. CdiA-CT heterogeneity implies that a range of toxic activities are used during CDI. Indeed, CdiA-CTs from uropathogenic E. coli and the plant pathogen Dickeya dadantii have different nuclease activities, each providing a distinct mechanism of growth inhibition. Finally, we show that bacteria lacking the CdiA-CT and CdiI coding regions are unable to compete with isogenic wild-type CDI(+) cells both in laboratory media and on a eukaryotic host. Taken together, these results suggest that CDI systems constitute an intricate immunity network with an important function in bacterial competition.


Asunto(s)
Toxinas Bacterianas/metabolismo , Escherichia coli Uropatógena/metabolismo , Secuencia de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Inhibición de Contacto/inmunología , Inhibición de Contacto/fisiología , Enterobacteriaceae/enzimología , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Escherichia coli Uropatógena/enzimología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/crecimiento & desarrollo
5.
Mol Microbiol ; 70(2): 323-40, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18761695

RESUMEN

Contact-dependent growth inhibition (CDI) is a phenomenon by which bacterial cell growth is regulated by direct cell-to-cell contact via the CdiA/CdiB two-partner secretion system. Characterization of mutants resistant to CDI allowed us to identify BamA (YaeT) as the outer membrane receptor for CDI and AcrB as a potential downstream target. Notably, both BamA and AcrB are part of distinct multi-component machines. The Bam machine assembles outer membrane beta-barrel proteins into the outer membrane and the Acr machine exports small molecules into the extracellular milieu. We discovered that a mutation that reduces expression of BamA decreased binding of CDI+ inhibitor cells, measured by flow cytometry with fluorescently labelled bacteria. In addition, alpha-BamA antibodies, which recognized extracellular epitopes of BamA based on immunofluorescence, specifically blocked inhibitor-target cells binding and CDI. A second class of CDI-resistant mutants identified carried null mutations in the acrB gene. AcrB is an inner membrane component of a multidrug efflux pump that normally forms a cell envelope-spanning complex with the membrane fusion protein AcrA and the outer membrane protein TolC. Strikingly, the requirement for the BamA and AcrB proteins in CDI is independent of their multi-component machines, and thus their role in the CDI pathway may reflect novel, import-related functions.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Proteínas de la Membrana Bacteriana Externa/genética , Recuento de Colonia Microbiana , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Eliminación de Gen , Viabilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación Missense
6.
Science ; 309(5738): 1245-8, 2005 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-16109881

RESUMEN

Bacteria have developed mechanisms to communicate and compete with each other for limited environmental resources. We found that certain Escherichia coli, including uropathogenic strains, contained a bacterial growth-inhibition system that uses direct cell-to-cell contact. Inhibition was conditional, dependent upon the growth state of the inhibitory cell and the pili expression state of the target cell. Both a large cell-surface protein designated Contact-dependent inhibitor A (CdiA) and two-partner secretion family member CdiB were required for growth inhibition. The CdiAB system may function to regulate the growth of specific cells within a differentiated bacterial population.


Asunto(s)
Escherichia coli K12/crecimiento & desarrollo , Proteínas de Escherichia coli/fisiología , Escherichia coli/crecimiento & desarrollo , Proteínas de la Membrana/fisiología , Secuencia de Aminoácidos , Clonación Molecular , Biología Computacional , Inhibición de Contacto , Medios de Cultivo Condicionados , Escherichia coli/genética , Escherichia coli/patogenicidad , Escherichia coli/fisiología , Escherichia coli K12/genética , Escherichia coli K12/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fimbrias Bacterianas/metabolismo , Genes Bacterianos , Prueba de Complementación Genética , Islas Genómicas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Sistemas de Lectura Abierta , Virulencia
7.
Mol Cell ; 16(4): 537-47, 2004 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-15546614

RESUMEN

Pap pili gene expression is controlled by a reversible OFF/ON phase switch that is orchestrated by binding of Lrp to pap pilin promoter proximal sites 1, 2, and 3 (OFF) or pap promoter distal sites 4, 5, and 6 (ON). Movement of Lrp between proximal and distal sites controls pap pilin transcription and is modulated by PapI and DNA adenine methylase. Here we show that activation of the environmentally responsive CpxAR two-component regulatory system inhibits Pap phase variation by generation of phosphorylated CpxR (CpxR-P). CpxR-P competes with Lrp for binding to both promoter proximal and distal pap DNA binding sites, inhibiting pap transcription in vitro and pili expression in vivo. In contrast to Lrp, CpxR-P is methylation insensitive and does not form DNA methylation patterns in vivo. CpxAR-dependent repression of pap transcription is also observed in response to alkaline growth conditions. These results provide insight into a mechanism for environmental control of epigenetically regulated gene expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genes de Cambio , Factores de Transcripción/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Huella de ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/metabolismo , Concentración de Iones de Hidrógeno , Proteína Reguladora de Respuesta a la Leucina , Modelos Biológicos , Fosforilación , Regiones Promotoras Genéticas , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Transcripción Genética , Activación Transcripcional
8.
Mol Cell ; 12(4): 947-57, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14580345

RESUMEN

The expression of pyelonephritis-associated pili (Pap) in uropathogenic Escherichia coli is epigenetically controlled by a reversible OFF to ON switch. In phase OFF cells, the global regulator Lrp is bound to pap sites proximal to the pilin promoter, whereas in phase ON cells, Lrp is bound to promoter distal sites. We have found that the local regulator PapI increases the affinity of Lrp for the sequence "ACGATC," which contains the target "GATC" site for DNA adenine methylase (Dam) and is present in both promoter proximal and distal sites. Mutational analyses show that methylation of the promoter proximal GATC(prox) site by Dam is required for transition to the phase ON state by specifically blocking PapI-dependent binding of Lrp to promoter proximal sites. Furthermore, our data support the hypothesis that PapI-dependent binding of Lrp to a hemimethylated GATC(dist) site generated by DNA replication is a critical component of the switch mechanism.


Asunto(s)
Metilación de ADN , Epigénesis Genética/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Represoras/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases/genética , Sitios de Unión/genética , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Proteína Reguladora de Respuesta a la Leucina , Regiones Promotoras Genéticas/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...