Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 38(1): 84-95, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33035304

RESUMEN

Reconstructing the evolutionary history of island biotas is complicated by unusual morphological evolution in insular environments. However, past human-caused extinctions limit the use of molecular analyses to determine origins and affinities of enigmatic island taxa. The Caribbean formerly contained a morphologically diverse assemblage of caviomorph rodents (33 species in 19 genera), ranging from ∼0.1 to 200 kg and traditionally classified into three higher-order taxa (Capromyidae/Capromyinae, Heteropsomyinae, and Heptaxodontidae). Few species survive today, and the evolutionary affinities of living and extinct Caribbean caviomorphs to each other and to mainland taxa are unclear: Are they monophyletic, polyphyletic, or paraphyletic? We use ancient DNA techniques to present the first genetic data for extinct heteropsomyines and heptaxodontids, as well as for several extinct capromyids, and demonstrate through analysis of mitogenomic and nuclear data sets that all sampled Caribbean caviomorphs represent a well-supported monophyletic group. The remarkable morphological and ecological variation observed across living and extinct caviomorphs from Cuba, Hispaniola, Jamaica, Puerto Rico, and other islands was generated through within-archipelago evolutionary radiation following a single Early Miocene overwater colonization. This evolutionary pattern contrasts with the origination of diversity in many other Caribbean groups. All living and extinct Caribbean caviomorphs comprise a single biologically remarkable subfamily (Capromyinae) within the morphologically conservative living Neotropical family Echimyidae. Caribbean caviomorphs represent an important new example of insular mammalian adaptive radiation, where taxa retaining "ancestral-type" characteristics coexisted alongside taxa occupying novel island niches. Diversification was associated with the greatest insular body mass increase recorded in rodents and possibly the greatest for any mammal lineage.


Asunto(s)
ADN Antiguo/análisis , Roedores/genética , Animales , Filogeografía , Indias Occidentales
2.
BMC Evol Biol ; 20(1): 106, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811443

RESUMEN

BACKGROUND: The Caribbean offers a unique opportunity to study evolutionary dynamics in insular mammals. However, the recent extinction of most Caribbean non-volant mammals has obstructed evolutionary studies, and poor DNA preservation associated with tropical environments means that very few ancient DNA sequences are available for extinct vertebrates known from the region's Holocene subfossil record. The endemic Caribbean eulipotyphlan family Nesophontidae ("island-shrews") became extinct ~ 500 years ago, and the taxonomic validity of many Nesophontes species and their wider evolutionary dynamics remain unclear. Here we use both morphometric and palaeogenomic methods to clarify the status and evolutionary history of Nesophontes species from Hispaniola, the second-largest Caribbean island. RESULTS: Principal component analysis of 65 Nesophontes mandibles from late Quaternary fossil sites across Hispaniola identified three non-overlapping morphometric clusters, providing statistical support for the existence of three size-differentiated Hispaniolan Nesophontes species. We were also able to extract and sequence ancient DNA from a ~ 750-year-old specimen of Nesophontes zamicrus, the smallest non-volant Caribbean mammal, including a whole-mitochondrial genome and partial nuclear genes. Nesophontes paramicrus (39-47 g) and N. zamicrus (~ 10 g) diverged recently during the Middle Pleistocene (mean estimated divergence = 0.699 Ma), comparable to the youngest species splits in Eulipotyphla and other mammal groups. Pairwise genetic distance values for N. paramicrus and N. zamicrus based on mitochondrial and nuclear genes are low, but fall within the range of comparative pairwise data for extant eulipotyphlan species-pairs. CONCLUSIONS: Our combined morphometric and palaeogenomic analyses provide evidence for multiple co-occurring species and rapid body size evolution in Hispaniolan Nesophontes, in contrast to patterns of genetic and morphometric differentiation seen in Hispaniola's extant non-volant land mammals. Different components of Hispaniola's mammal fauna have therefore exhibited drastically different rates of morphological evolution. Morphological evolution in Nesophontes is also rapid compared to patterns across the Eulipotyphla, and our study provides an important new example of rapid body size change in a small-bodied insular vertebrate lineage. The Caribbean was a hotspot for evolutionary diversification as well as preserving ancient biodiversity, and studying the surviving representatives of its mammal fauna is insufficient to reveal the evolutionary patterns and processes that generated regional diversity.


Asunto(s)
Tamaño Corporal , Fósiles , Musarañas/clasificación , Animales , ADN Antiguo/análisis , Filogenia , Indias Occidentales
3.
Proc Natl Acad Sci U S A ; 115(50): 12769-12774, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30420497

RESUMEN

The insular Caribbean until recently contained a diverse mammal fauna including four endemic platyrrhine primate species, all of which died out during the Holocene. Previous morphological studies have attempted to establish how these primates are related to fossil and extant platyrrhines, whether they represent ancient or recent colonists, and whether they constitute a monophyletic group. These efforts have generated multiple conflicting hypotheses, from close sister-taxon relationships with several different extant platyrrhines to derivation from a stem platyrrhine lineage outside the extant Neotropical radiation. This diversity of opinion reflects the fact that Caribbean primates were morphologically extremely unusual, displaying numerous autapomorphies and apparently derived conditions present across different platyrrhine clades. Here we report ancient DNA data for an extinct Caribbean primate: a limited-coverage entire mitochondrial genome and seven regions of nuclear genome for the most morphologically derived taxon, the Jamaican monkey Xenothrix mcgregori We demonstrate that Xenothrix is part of the existing platyrrhine radiation rather than a late-surviving stem platyrrhine, despite its unusual adaptations, and falls within the species-rich but morphologically conservative titi monkey clade (Callicebinae) as sister to the newly recognized genus Cheracebus These results are not congruent with previous morphology-based hypotheses and suggest that even morphologically conservative lineages can exhibit phenetic plasticity in novel environments like those found on islands. Xenothrix and Cheracebus diverged ca. 11 Ma, but primates have been present in the Caribbean since 17.5-18.5 Ma, indicating that Caribbean primate diversity was generated by multiple over-water colonizations.


Asunto(s)
ADN Antiguo/análisis , Haplorrinos/genética , Adaptación Fisiológica/genética , Animales , Biodiversidad , Región del Caribe , Núcleo Celular/genética , Fósiles , Genoma Mitocondrial/genética , Filogenia , Agua
4.
Mol Biol Evol ; 33(12): 3095-3103, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27624716

RESUMEN

The mammalian evolutionary tree has lost several major clades through recent human-caused extinctions. This process of historical biodiversity loss has particularly affected tropical island regions such as the Caribbean, an area of great evolutionary diversification but poor molecular preservation. The most enigmatic of the recently extinct endemic Caribbean mammals are the Nesophontidae, a family of morphologically plesiomorphic lipotyphlan insectivores with no consensus on their evolutionary affinities, and which constitute the only major recent mammal clade to lack any molecular information on their phylogenetic placement. Here, we use a palaeogenomic approach to place Nesophontidae within the phylogeny of recent Lipotyphla. We recovered the near-complete mitochondrial genome and sequences for 17 nuclear genes from a ∼750-year-old Hispaniolan Nesophontes specimen, and identify a divergence from their closest living relatives, the Solenodontidae, more than 40 million years ago. Nesophontidae is thus an older distinct lineage than many extant mammalian orders, highlighting not only the role of island systems as "museums" of diversity that preserve ancient lineages, but also the major human-caused loss of evolutionary history.


Asunto(s)
Evolución Biológica , Eulipotyphla/clasificación , Eulipotyphla/genética , Análisis de Secuencia de ADN/métodos , Animales , Biodiversidad , ADN Antiguo/análisis , ADN Mitocondrial/genética , Genoma Mitocondrial , Filogenia , Indias Occidentales
5.
Nature ; 522(7554): 81-4, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25799987

RESUMEN

No large group of recently extinct placental mammals remains as evolutionarily cryptic as the approximately 280 genera grouped as 'South American native ungulates'. To Charles Darwin, who first collected their remains, they included perhaps the 'strangest animal[s] ever discovered'. Today, much like 180 years ago, it is no clearer whether they had one origin or several, arose before or after the Cretaceous/Palaeogene transition 66.2 million years ago, or are more likely to belong with the elephants and sirenians of superorder Afrotheria than with the euungulates (cattle, horses, and allies) of superorder Laurasiatheria. Morphology-based analyses have proved unconvincing because convergences are pervasive among unrelated ungulate-like placentals. Approaches using ancient DNA have also been unsuccessful, probably because of rapid DNA degradation in semitropical and temperate deposits. Here we apply proteomic analysis to screen bone samples of the Late Quaternary South American native ungulate taxa Toxodon (Notoungulata) and Macrauchenia (Litopterna) for phylogenetically informative protein sequences. For each ungulate, we obtain approximately 90% direct sequence coverage of type I collagen α1- and α2-chains, representing approximately 900 of 1,140 amino-acid residues for each subunit. A phylogeny is estimated from an alignment of these fossil sequences with collagen (I) gene transcripts from available mammalian genomes or mass spectrometrically derived sequence data obtained for this study. The resulting consensus tree agrees well with recent higher-level mammalian phylogenies. Toxodon and Macrauchenia form a monophyletic group whose sister taxon is not Afrotheria or any of its constituent clades as recently claimed, but instead crown Perissodactyla (horses, tapirs, and rhinoceroses). These results are consistent with the origin of at least some South American native ungulates from 'condylarths', a paraphyletic assembly of archaic placentals. With ongoing improvements in instrumentation and analytical procedures, proteomics may produce a revolution in systematics such as that achieved by genomics, but with the possibility of reaching much further back in time.


Asunto(s)
Colágeno Tipo I/química , Fósiles , Mamíferos/clasificación , Filogenia , Secuencia de Aminoácidos , Animales , Huesos/química , Bovinos , Colágeno Tipo I/genética , Femenino , Perisodáctilos/clasificación , Placenta , Embarazo , Proteómica , América del Sur
6.
Mol Ecol ; 21(9): 2239-53, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22404699

RESUMEN

Hispaniola is a geotectonically complex island consisting of two palaeo-islands that docked c. 10 Ma, with a further geological boundary subdividing the southern palaeo-island into eastern and western regions. All three regions have been isolated by marine barriers during the late Cenozoic and possess biogeographically distinct terrestrial biotas. However, there is currently little evidence to indicate whether Hispaniolan mammals show distributional patterns reflecting this geotectonic history, as the island's endemic land mammal fauna is now almost entirely extinct. We obtained samples of Hispaniolan hutia (Plagiodontia aedium), one of the two surviving Hispaniolan land mammal species, through fieldwork and historical museum collections from seven localities distributed across all three of the island's biogeographic regions. Phylogenetic analysis using mitochondrial DNA (cytochrome b) reveals a pattern of historical allopatric lineage divergence in this species, with the spatial distribution of three distinct hutia lineages biogeographically consistent with the island's geotectonic history. Coalescent modelling, approximate Bayesian computation and approximate Bayes factor analyses support our phylogenetic inferences, indicating near-complete genetic isolation of these biogeographically separate populations and differing estimates of their effective population sizes. Spatial congruence of hutia lineage divergence is not however matched by temporal congruence with divergences in other Hispaniolan taxa or major events in Hispaniola's geotectonic history; divergence between northern and southern hutia lineages dates to c. 0.6 Ma, significantly later than the unification of the palaeo-islands. The three allopatric Plagiodontia populations should all be treated as distinct management units for conservation, with particular attention required for the northern population (low haplotype diversity) and the south-western population (high haplotype diversity but highly threatened).


Asunto(s)
Evolución Biológica , Especiación Genética , Roedores/genética , Animales , Teorema de Bayes , Citocromos b/genética , ADN Mitocondrial/genética , República Dominicana , Flujo Génico , Variación Genética , Geografía , Haití , Haplotipos , Mitocondrias/genética , Filogenia , Filogeografía , Densidad de Población , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA