Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Regen Med ; 6(1): 84, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862411

RESUMEN

Post-surgery liver failure is a serious complication for patients after extended partial hepatectomies (ePHx). Previously, we demonstrated in the pig model that transplantation of mesenchymal stromal cells (MSC) improved circulatory maintenance and supported multi-organ functions after 70% liver resection. Mechanisms behind the beneficial MSC effects remained unknown. Here we performed 70% liver resection in pigs with and without MSC treatment, and animals were monitored for 24 h post surgery. Gene expression profiles were determined in the lung and liver. Bioinformatics analysis predicted organ-independent MSC targets, importantly a role for thrombospondin-1 linked to transforming growth factor-ß (TGF-ß) and downstream signaling towards providing epithelial plasticity and epithelial-mesenchymal transition (EMT). This prediction was supported histologically and mechanistically, the latter with primary hepatocyte cell cultures. MSC attenuated the surgery-induced increase of tissue damage, of thrombospondin-1 and TGF-ß, as well as of epithelial plasticity in both the liver and lung. This suggests that MSC ameliorated surgery-induced hepatocellular stress and EMT, thus supporting epithelial integrity and facilitating regeneration. MSC-derived soluble factor(s) did not directly interfere with intracellular TGF-ß signaling, but inhibited thrombospondin-1 secretion from thrombocytes and non-parenchymal liver cells, therewith obviously reducing the availability of active TGF-ß.

2.
Sci Rep ; 7(1): 2617, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572613

RESUMEN

In patients, acute kidney injury (AKI) is often due to haemodynamic impairment associated with hepatic decompensation following extended liver surgery. Mesenchymal stem cells (MSCs) supported tissue protection in a variety of acute and chronic diseases, and might hence ameliorate AKI induced by extended liver resection. Here, 70% liver resection was performed in male pigs. MSCs were infused through a central venous catheter and haemodynamic parameters as well as markers of acute kidney damage were monitored under intensive care conditions for 24 h post-surgery. Cytokine profiles were established to anticipate the MSCs' potential mode of action. After extended liver resection, hyperdynamic circulation, associated with hyponatraemia, hyperkalaemia, an increase in serum aldosterone and low urine production developed. These signs of hepatorenal dysfunction and haemodynamic impairment were corrected by MSC treatment. MSCs elevated PDGF levels in the serum, possibly contributing to circulatory homeostasis. Another 14 cytokines were increased in the kidney, most of which are known to support tissue regeneration. In conclusion, MSCs supported kidney and liver function after extended liver resection. They probably acted through paracrine mechanisms improving haemodynamics and tissue homeostasis. They might thus provide a promising strategy to prevent acute kidney injury in the context of post-surgery acute liver failure.


Asunto(s)
Lesión Renal Aguda/prevención & control , Hemodinámica , Hígado/lesiones , Trasplante de Células Madre Mesenquimatosas , Lesión Renal Aguda/sangre , Lesión Renal Aguda/etiología , Animales , Presión Sanguínea , Modelos Animales de Enfermedad , Hígado/cirugía , Masculino , Comunicación Paracrina , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...