Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cells ; 13(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38920699

RESUMEN

Alkaptonuria (AKU) is a genetic disorder that affects connective tissues of several body compartments causing cartilage degeneration, tendon calcification, heart problems, and an invalidating, early-onset form of osteoarthritis. The molecular mechanisms underlying AKU involve homogentisic acid (HGA) accumulation in cells and tissues. HGA is highly reactive, able to modify several macromolecules, and activates different pathways, mostly involved in the onset and propagation of oxidative stress and inflammation, with consequences spreading from the microscopic to the macroscopic level leading to irreversible damage. Gaining a deeper understanding of AKU molecular mechanisms may provide novel possible therapeutical approaches to counteract disease progression. In this review, we first describe inflammation and oxidative stress in AKU and discuss similarities with other more common disorders. Then, we focus on HGA reactivity and AKU molecular mechanisms. We finally describe a multi-purpose digital platform, named ApreciseKUre, created to facilitate data collection, integration, and analysis of AKU-related data.


Asunto(s)
Alcaptonuria , Estrés Oxidativo , Alcaptonuria/metabolismo , Alcaptonuria/genética , Humanos , Ácido Homogentísico/metabolismo , Inflamación/patología , Inflamación/metabolismo , Animales
2.
Nat Rev Dis Primers ; 10(1): 16, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453957

RESUMEN

Alkaptonuria is a rare inborn error of metabolism caused by the deficiency of homogentisate 1,2-dioxygenase activity. The consequent homogentisic acid (HGA) accumulation in body fluids and tissues leads to a multisystemic and highly debilitating disease whose main features are dark urine, ochronosis (HGA-derived pigment in collagen-rich connective tissues), and a painful and severe form of osteoarthropathy. Other clinical manifestations are extremely variable and include kidney and prostate stones, aortic stenosis, bone fractures, and tendon, ligament and/or muscle ruptures. As an autosomal recessive disorder, alkaptonuria affects men and women equally. Debilitating symptoms appear around the third decade of life, but a proper and timely diagnosis is often delayed due to their non-specific nature and a lack of knowledge among physicians. In later stages, patients' quality of life might be seriously compromised and further complicated by comorbidities. Thus, appropriate management of alkaptonuria requires a multidisciplinary approach, and periodic clinical evaluation is advised to monitor disease progression, complications and/or comorbidities, and to enable prompt intervention. Treatment options are patient-tailored and include a combination of medications, physical therapy and surgery. Current basic and clinical research focuses on improving patient management and developing innovative therapies and implementing precision medicine strategies.


Asunto(s)
Alcaptonuria , Ocronosis , Masculino , Humanos , Femenino , Alcaptonuria/complicaciones , Alcaptonuria/diagnóstico , Alcaptonuria/terapia , Calidad de Vida , Ocronosis/complicaciones , Ocronosis/diagnóstico , Riñón/metabolismo , Ácido Homogentísico/metabolismo
3.
Cells ; 11(22)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36429096

RESUMEN

Nitisinone (NTBC) was recently approved to treat alkaptonuria (AKU), but there is no information on its impact on oxidative stress and inflammation, which are observed in AKU. Therefore, serum samples collected during the clinical studies SONIA1 (40 AKU patients) and SONIA2 (138 AKU patients) were tested for Serum Amyloid A (SAA), CRP and IL-8 by ELISA; Advanced Oxidation Protein Products (AOPP) by spectrophotometry; and protein carbonyls by Western blot. Our results show that NTBC had no significant effects on the tested markers except for a slight but statistically significant effect for NTBC, but not for the combination of time and NTBC, on SAA levels in SONIA2 patients. Notably, the majority of SONIA2 patients presented with SAA > 10 mg/L, and 30 patients in the control group (43.5%) and 40 patients (58.0%) in the NTBC-treated group showed persistently elevated SAA > 10 mg/L at each visit during SONIA2. Higher serum SAA correlated with lower quality of life and higher morbidity. Despite no quantitative differences in AOPP, the preliminary analysis of protein carbonyls highlighted patterns that deserve further investigation. Overall, our results suggest that NTBC cannot control the sub-clinical inflammation due to increased SAA observed in AKU, which is also a risk factor for developing secondary amyloidosis.


Asunto(s)
Alcaptonuria , Humanos , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/complicaciones , Alcaptonuria/metabolismo , Productos Avanzados de Oxidación de Proteínas/metabolismo , Productos Avanzados de Oxidación de Proteínas/uso terapéutico , Calidad de Vida , Biomarcadores/metabolismo , Proteína Amiloide A Sérica/metabolismo , Inflamación/metabolismo , Estrés Oxidativo
4.
J Agric Food Chem ; 70(23): 6963-6981, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35652597

RESUMEN

The serendipitous discovery of the HPPD inhibitors from allelopathic plants opened the way for searching new and effective herbicidal agents by application of classical hit-to-lead optimization approaches. A plethora of active and selective compounds were discovered that belong to three major classes of cyclohexane-based triketones, pyrazole-based diketones, and diketonitriles. In addition, to enhance inhibitory constant and herbicidal activity, many efforts were also made to gain broader weed control, crop safety, and eventual agricultural applicability. Moreover, HPPD inhibitors emerged as therapeutic agents for inherited and metabolic human diseases as well as vector-selective insecticides in the control of hematophagous arthropods. Given the large set of experimental data available, structure-activity relationship analysis could be used to derive suggestions for next generation optimized compounds.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Herbicidas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Herbicidas/química , Herbicidas/farmacología , Humanos , Cetonas/química , Cetonas/farmacología , Estructura Molecular , Relación Estructura-Actividad , Control de Malezas
5.
Arch Biochem Biophys ; 717: 109137, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35090868

RESUMEN

Alkaptonuria (AKU) is an ultra-rare genetic disease caused by a deficient activity of the enzyme homogentisate 1,2-dioxygenase (HGD) leading to the accumulation of homogentisic acid (HGA) on connective tissues. Even though AKU is a multi-systemic disease, osteoarticular cartilage is the most affected system and the most damaged tissue by the disease. In chondrocytes, HGA causes oxidative stress dysfunctions, which induce a series of not fully characterized cellular responses. In this study, we used a human chondrocytic cell line as an AKU model to evaluate, for the first time, the effect of HGA on autophagy, the main homeostasis system in articular cartilage. Cells responded timely to HGA treatment with an increase in autophagy as a mechanism of protection. In a chronic state, HGA-induced oxidative stress decreased autophagy, and chondrocytes, unable to restore balance, activated the chondroptosis pathway. This decrease in autophagy also correlated with the accumulation of ochronotic pigment, a hallmark of AKU. Our data suggest new perspectives for understanding AKU and a mechanistic model that rationalizes the damaging role of HGA.


Asunto(s)
Alcaptonuria/prevención & control , Autofagia/efectos de los fármacos , Biomarcadores/metabolismo , Homogentisato 1,2-Dioxigenasa/metabolismo , Ácido Homogentísico/metabolismo , Alcaptonuria/metabolismo , Apoptosis/efectos de los fármacos , Cartílago Articular/efectos de los fármacos , Línea Celular , Condrocitos/citología , Ácido Homogentísico/farmacología , Humanos , Ocronosis/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal
6.
Expert Rev Proteomics ; 18(4): 315-327, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33861161

RESUMEN

Introduction: The term 'orphan diseases' includes conditions meeting prevalence-based or commercial viability criteria: they affect a small number of individuals and are considered an unviable market for drug development. Proteomics is an important technology to study them, providing information on mechanisms and evolution, biomarkers, and effects of therapeutic interventions.Areas covered: Herein, we review how proteomics and bioinformatic tools could be applied to the study of rare diseases and discuss pitfalls and potential.Expert opinion: Research in the field of rare diseases has to face many challenges, and implementation plans should foresee highly specialized collaborative consortia to create multidisciplinary frameworks for data sharing, advancing research, supporting clinical studies, and accelerating drug development. The integration of different technologies will allow better knowledge of disease pathophysiology, and the inclusion of proteomics and other omics technologies in this context will be pivotal to this aim.Several aspects of rare diseases, often perceived as limiting factors, might actually be advantages for a precision medicine approach: the limited number of patients, the collaboration with patient societies, and the availability of curated clinical registries could allow the development of homogeneous clinical databases and ultimately a better control over the data to be analyzed.


Asunto(s)
Proteómica , Enfermedades Raras , Biomarcadores , Biología Computacional , Humanos , Medicina de Precisión
7.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33538294

RESUMEN

Alkaptonuria (AKU, OMIM: 203500) is an autosomal recessive disorder caused by mutations in the Homogentisate 1,2-dioxygenase (HGD) gene. A lack of standardized data, information and methodologies to assess disease severity and progression represents a common complication in ultra-rare disorders like AKU. This is the reason why we developed a comprehensive tool, called ApreciseKUre, able to collect AKU patients deriving data, to analyse the complex network among genotypic and phenotypic information and to get new insight in such multi-systemic disease. By taking advantage of the dataset, containing the highest number of AKU patient ever considered, it is possible to apply more sophisticated computational methods (such as machine learning) to achieve a first AKU patient stratification based on phenotypic and genotypic data in a typical precision medicine perspective. Thanks to our sufficiently populated and organized dataset, it is possible, for the first time, to extensively explore the phenotype-genotype relationships unknown so far. This proof of principle study for rare diseases confirms the importance of a dedicated database, allowing data management and analysis and can be used to tailor treatments for every patient in a more effective way.


Asunto(s)
Alcaptonuria/genética , Bases de Datos Genéticas , Genotipo , Aprendizaje Automático , Selección de Paciente , Medicina de Precisión , Alcaptonuria/enzimología , Femenino , Homogentisato 1,2-Dioxigenasa/genética , Humanos , Masculino , Mutación , Enfermedades Raras
8.
Lancet Diabetes Endocrinol ; 8(9): 762-772, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32822600

RESUMEN

BACKGROUND: Alkaptonuria is a rare, genetic, multisystem disease characterised by the accumulation of homogentisic acid (HGA). No HGA-lowering therapy has been approved to date. The aim of SONIA 2 was to investigate the efficacy and safety of once-daily nitisinone for reducing HGA excretion in patients with alkaptonuria and to evaluate whether nitisinone has a clinical benefit. METHODS: SONIA 2 was a 4-year, open-label, evaluator-blind, randomised, no treatment controlled, parallel-group study done at three sites in the UK, France, and Slovakia. Patients aged 25 years or older with confirmed alkaptonuria and any clinical disease manifestations were randomly assigned (1:1) to receive either oral nitisinone 10 mg daily or no treatment. Patients could not be masked to treatment due to colour changes in the urine, but the study was evaluator-blinded as far as possible. The primary endpoint was daily urinary HGA excretion (u-HGA24) after 12 months. Clinical evaluation Alkaptonuria Severity Score Index (cAKUSSI) score was assessed at 12, 24, 36, and 48 months. Efficacy variables were analysed in all randomly assigned patients with a valid u-HGA24 measurement at baseline. Safety variables were analysed in all randomly assigned patients. The study was registered at ClinicalTrials.gov (NCT01916382). FINDINGS: Between May 7, 2014, and Feb 16, 2015, 139 patients were screened, of whom 138 were included in the study, with 69 patients randomly assigned to each group. 55 patients in the nitisinone group and 53 in the control group completed the study. u-HGA24 at 12 months was significantly decreased by 99·7% in the nitisinone group compared with the control group (adjusted geometric mean ratio of nitisinone/control 0·003 [95% CI 0·003 to 0·004], p<0·0001). At 48 months, the increase in cAKUSSI score from baseline was significantly lower in the nitisinone group compared with the control group (adjusted mean difference -8·6 points [-16·0 to -1·2], p=0·023). 400 adverse events occurred in 59 (86%) patients in the nitisinone group and 284 events occurred in 57 (83%) patients in the control group. No treatment-related deaths occurred. INTERPRETATION: Nitisinone 10 mg daily was well tolerated and effective in reducing urinary excretion of HGA. Nitisinone decreased ochronosis and improved clinical signs, indicating a slower disease progression. FUNDING: European Commission Seventh Framework Programme.


Asunto(s)
Alcaptonuria/tratamiento farmacológico , Alcaptonuria/metabolismo , Ciclohexanonas/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Internacionalidad , Nitrobenzoatos/administración & dosificación , Adulto , Anciano , Alcaptonuria/diagnóstico , Esquema de Medicación , Femenino , Ácido Homogentísico/metabolismo , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Método Simple Ciego , Resultado del Tratamiento
9.
Orphanet J Rare Dis ; 15(1): 46, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050984

RESUMEN

BACKGROUND: Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease caused by a mutation in the homogentisate 1,2-dioxygenase (HGD) gene. One of the main obstacles in studying AKU, and other ultra-rare diseases, is the lack of a standardized methodology to assess disease severity or response to treatment. Quality of Life scores (QoL) are a reliable way to monitor patients' clinical condition and health status. QoL scores allow to monitor the evolution of diseases and assess the suitability of treatments by taking into account patients' symptoms, general health status and care satisfaction. However, more comprehensive tools to study a complex and multi-systemic disease like AKU are needed. In this study, a Machine Learning (ML) approach was implemented with the aim to perform a prediction of QoL scores based on clinical data deposited in the ApreciseKUre, an AKU- dedicated database. METHOD: Data derived from 129 AKU patients have been firstly examined through a preliminary statistical analysis (Pearson correlation coefficient) to measure the linear correlation between 11 QoL scores. The variable importance in QoL scores prediction of 110 ApreciseKUre biomarkers has been then calculated using XGBoost, with K-nearest neighbours algorithm (k-NN) approach. Due to the limited number of data available, this model has been validated using surrogate data analysis. RESULTS: We identified a direct correlation of 6 (age, Serum Amyloid A, Chitotriosidase, Advanced Oxidation Protein Products, S-thiolated proteins and Body Mass Index) out of 110 biomarkers with the QoL health status, in particular with the KOOS (Knee injury and Osteoarthritis Outcome Score) symptoms (Relative Absolute Error (RAE) 0.25). The error distribution of surrogate-model (RAE 0.38) was unequivocally higher than the true-model one (RAE of 0.25), confirming the consistency of our dataset. Our data showed that inflammation, oxidative stress, amyloidosis and lifestyle of patients correlates with the QoL scores for physical status, while no correlation between the biomarkers and patients' mental health was present (RAE 1.1). CONCLUSIONS: This proof of principle study for rare diseases confirms the importance of database, allowing data management and analysis, which can be used to predict more effective treatments.


Asunto(s)
Alcaptonuria , Calidad de Vida , Manejo de Datos , Humanos , Aprendizaje Automático , Enfermedades Raras
10.
J Inherit Metab Dis ; 43(4): 737-747, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31609457

RESUMEN

The clinical effects of alkaptonuria (AKU) are delayed and ageing influences disease progression. Morbidity of AKU is secondary to high circulating homogentisic acid (HGA) and ochronosis. It is not known whether HGA is produced by or processed in the kidney in AKU. Data from AKU patients from four studies were merged to form a single AKU group. A control group of non-AKU subjects was generated by merging data from two non-AKU studies. Data were used to derive renal clearance and fractional excretion (FE) ratios for creatinine, HGA, phenylalanine (PHE) and tyrosine (TYR) using standard calculations, for comparison between the AKU and the control groups. There were 225 AKU patients in the AKU group and 52 in the non-AKU control group. Circulating HGA increased with age (P < 0.001), and was significantly associated with decreased HGA clearance (CLHGA ) (P < 0.001) and FEHGA (P < 0.001). CLHGA and FEHGA were increased beyond the theoretical maximum renal plasma flow, confirming renal production and emphasising the greater contribution of net tubular secretion than glomerular filtration to renal elimination of HGA. The kidneys are crucial to elimination of HGA. Elimination of HGA is impaired with age resulting in worsening disease over time. The kidney is an important site for production of HGA. Tubular secretion of HGA contributes more to elimination of HGA in AKU than glomerular filtration.


Asunto(s)
Alcaptonuria/metabolismo , Tasa de Filtración Glomerular , Ácido Homogentísico/metabolismo , Riñón/metabolismo , Ocronosis/etiología , Adulto , Alcaptonuria/fisiopatología , Estudios de Casos y Controles , Creatinina/metabolismo , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Ocronosis/fisiopatología , Fenilalanina/metabolismo , Factores Sexuales , Tirosina/metabolismo
11.
FASEB J ; 33(11): 12696-12703, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31462106

RESUMEN

Alkaptonuria (AKU) is an ultrarare autosomal recessive disorder (MIM 203500) that is caused byby a complex set of mutations in homogentisate 1,2-dioxygenasegene and consequent accumulation of homogentisic acid (HGA), causing a significant protein oxidation. A secondary form of amyloidosis was identified in AKU and related to high circulating serum amyloid A (SAA) levels, which are linked with inflammation and oxidative stress and might contribute to disease progression and patients' poor quality of life. Recently, we reported that inflammatory markers (SAA and chitotriosidase) and oxidative stress markers (protein thiolation index) might be disease activity markers in AKU. Thanks to an international network, we collected genotypic, phenotypic, and clinical data from more than 200 patients with AKU. These data are currently stored in our AKU database, named ApreciseKUre. In this work, we developed an algorithm able to make predictions about the oxidative status trend of each patient with AKU based on 55 predictors, namely circulating HGA, body mass index, total cholesterol, SAA, and chitotriosidase. Our general aim is to integrate the data of apparently heterogeneous patients with AKUAKU by using specific bioinformatics tools, in order to identify pivotal mechanisms involved in AKU for a preventive, predictive, and personalized medicine approach to AKU.-Cicaloni, V., Spiga, O., Dimitri, G. M., Maiocchi, R., Millucci, L., Giustarini, D., Bernardini, G., Bernini, A., Marzocchi, B., Braconi, D., Santucci, A. Interactive alkaptonuria database: investigating clinical data to improve patient care in a rare disease.


Asunto(s)
Alcaptonuria , Biología Computacional , Bases de Datos Genéticas , Medicina de Precisión , Enfermedades Raras , Alcaptonuria/metabolismo , Alcaptonuria/patología , Alcaptonuria/terapia , Femenino , Humanos , Masculino , Enfermedades Raras/metabolismo , Enfermedades Raras/patología , Enfermedades Raras/terapia
12.
Chem Res Toxicol ; 32(6): 1096-1102, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-30945548

RESUMEN

Glutathione (GSH) is one of the most well-studied biomarkers of oxidative stress. Under oxidizing conditions, GSH is transformed into its disulfide forms, glutathione disulfide (GSSG) and S-glutathionylated proteins (PSSG), which are considered to be reliable biomarkers of oxidative stress. In red blood cells (RBCs), the main targets of S-glutathionylation are hemoglobin and membrane-associated skeletal proteins, but S-glutathionylated hemoglobin (HbSSG) has been more thoroughly studied as a biomarker of oxidative stress than S-glutahionylated RBC membrane skeletal proteins. Here, we have investigated whether and how all these biomarkers are altered in human RBCs treated with a slow and cyclically intermittent flux of the oxidant tert-butyl hydroperoxide. To this aim, a new device for sample treatment and collection was developed. During and at the end of the treatment, GSH, GSSG, and PSSG (discriminating between HbSSG and membrane PSSG) were measured by the use of spectrophotometer (for GSSG) and HPLC (for GSH, HbSSG, and membrane PSSG). The main results of our study are as follows: (i) GSH decreased and GSSG increased, but only in the presence of the oxidant, and recovered their initial values at the end of the infusion; (ii) the increase in total PSSG concentration was lower than that of GSSG, but it kept on throughout the experiments; (iii) membrane skeletal proteins did not recover their initial values, whereas HbSSG levels recovered their initial values similarly to GSH and GSSG; (d) membrane skeletal PSSG were more stable and also more abundant than HbSSG. Western blot analysis indicated spectrin, ankyrin, and bands 3, 4.1, and 4.2 as the proteins most susceptible to S-glutathionylation in RBC membrane. These results suggest that S-glutathionylated membrane skeletal proteins can be considered as a suitable biomarker of oxidative stress. Mostly when the oxidant insult is slight and intermittent, PSSG in RBC membranes are worth measuring in addition to GSSG by virtue of their greater stability.


Asunto(s)
Eritrocitos/metabolismo , Glutatión/metabolismo , Proteínas de la Membrana/metabolismo , Estrés Oxidativo , Disulfuros/análisis , Eritrocitos/química , Glutatión/análisis , Humanos , Proteínas de la Membrana/análisis
13.
J Cell Physiol ; 234(5): 6696-6708, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30341892

RESUMEN

Alkaptonuria (AKU) is a disease caused by a deficient homogentisate 1,2-dioxygenase activity leading to systemic accumulation of homogentisic acid (HGA), that forms a melanin-like polymer that progressively deposits onto connective tissues causing a pigmentation called "ochronosis" and tissue degeneration. The effects of AKU and ochronotic pigment on the biomechanical properties of articular cartilage need further investigation. To this aim, AKU cartilage was studied using thermal (thermogravimetry and differential scanning calorimetry) and rheological analysis. We found that AKU cartilage had a doubled mesopore radius compared to healthy cartilage. Since the mesoporous structure is the main responsible for maintaining a correct hydrostatic pressure and tissue homoeostasis, drastic changes of thermal and rheological parameters were found in AKU. In particular, AKU tissue lost its capability to enhance chondrocytes metabolism (decreased heat capacity) and hence the production of proteoglycans. A drastic increase in stiffness and decrease in dissipative and lubricant role ensued in AKU cartilage. Multiphoton and scanning electron microscopies revealed destruction of cell-matrix microstructure and disruption of the superficial layer. Such observations on AKU specimens were confirmed in HGA-treated healthy cartilage, indicating that HGA is the toxic responsible of morphological and mechanical alterations of cartilage in AKU.


Asunto(s)
Alcaptonuria/tratamiento farmacológico , Condrocitos/efectos de los fármacos , Ácido Homogentísico/farmacología , Ocronosis/tratamiento farmacológico , Alcaptonuria/metabolismo , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Humanos , Oxidación-Reducción/efectos de los fármacos , Pigmentación/efectos de los fármacos
14.
Comput Biol Med ; 103: 1-7, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30316064

RESUMEN

This paper describes our experience with the development and implementation of a database for the rare disease Alkaptonuria (AKU, OMIM: 203500). AKU is an autosomal recessive disorder caused by a gene mutation leading to the accumulation of homogentisic acid (HGA). Analogously to other rare conditions, currently there are no approved biomarkers to monitor AKU progression or severity. Although some biomarkers are under evaluation, an extensive biomarker analysis has not been undertaken in AKU yet. In order to fill this gap, we gained access to AKU-related data that we carefully processed, documented and stored in a database, which we named ApreciseKUre. We undertook a suitable statistical analysis by associating every couple of potential biomarkers to highlight significant correlations. Our database is continuously updated allowing us to find novel unpredicted correlations between AKU biomarkers and to confirm system reliability. ApreciseKUre includes data on potential biomarkers, patients' quality of life and clinical outcomes facilitating their integration and possibly allowing a Precision Medicine approach in AKU. This framework may represent an online tool that can be turned into a best practice model for other rare diseases.


Asunto(s)
Alcaptonuria , Bases de Datos Factuales , Medicina de Precisión/métodos , Alcaptonuria/diagnóstico , Alcaptonuria/genética , Alcaptonuria/fisiopatología , Biomarcadores , Interpretación Estadística de Datos , Humanos , Enfermedades Raras , Interfaz Usuario-Computador
15.
Expert Rev Proteomics ; 15(2): 153-164, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29271263

RESUMEN

INTRODUCTION: In the post-genomic era, the opportunity to combine and integrate cutting-edge analytical platforms and data processing systems allowed the birth of foodomics, 'a discipline that studies the Food and Nutrition domains through the application of advanced omics technologies to improve consumer's well-being, health, and confidence'. Since then, this discipline has rapidly evolved and researchers are now facing the daunting tasks to meet consumers' needs in terms of food traceability, sustainability, quality, safety and integrity. Most importantly, today it is imperative to provide solid evidence of the mechanisms through which food can promote human health and well-being. Areas covered: In this review, the complex relationships connecting food, nutrition and human health will be discussed, with emphasis on the relapses for the development of functional foods and nutraceuticals, personalized nutrition approaches, and the study of the interplay among gut microbiota, diet and health/diseases. Expert commentary: Evidence has been provided supporting the role of various omic platforms in studying the health-promoting effects of food and customized dietary interventions. However, although associated to major analytical challenges, only the proper integration of multi-omics studies and the implementation of bioinformatics tools and databases will help translate findings from clinical practice into effective personalized treatment strategies.


Asunto(s)
Dietética/métodos , Nutrigenómica/métodos , Proteómica/métodos , Dietoterapia/métodos , Dietética/tendencias , Análisis de los Alimentos/métodos , Humanos
16.
Calcif Tissue Int ; 101(1): 50-64, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28271171

RESUMEN

Alkaptonuria (AKU) is a hereditary disorder that results from altered structure and function of homogentisate 1,2 dioxygenase (HGD). This enzyme, predominantly produced by liver and kidney, is responsible for the breakdown of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway. A deficient HGD activity causes HGA levels to rise systemically. The disease is clinically characterized by homogentisic aciduria, bluish-black discoloration of connective tissues (ochronosis) and joint arthropathy. Additional manifestations are cardiovascular abnormalities, renal, urethral and prostate calculi and scleral and ear involvement. While the radiological aspect of ochronotic spondyloarthropathy is known, there are only few data regarding an exhaustive ultrastructural and histologic study of different tissues in AKU. Moreover, an in-depth analysis of tissues from patients of different ages, having varied symptoms, is currently lacking. A complete microscopic and ultrastructural analysis of different AKU tissues, coming from six differently aged patients, is here presented thus significantly contributing to a more comprehensive knowledge of this ultra-rare pathology.


Asunto(s)
Alcaptonuria/patología , Adulto , Anciano , Alcaptonuria/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ocronosis/etiología , Ocronosis/patología
17.
J Med Chem ; 60(10): 4101-4125, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28128559

RESUMEN

This review mainly focuses on the physiological function of 4-hydroxyphenylpyruvate dioxygenase (HPPD), as well as on the development and application of HPPD inhibitors of several structural classes. Among them, one illustrative example is represented by compounds belonging to the class of triketone compounds. They were discovered by serendipitous observations on weed growth and were developed as bleaching herbicides. Informed reasoning on nitisinone (NTBC, 14), a triketone that failed to reach the final steps of the herbicidal design and development process, allowed it to become a curative agent for type I tyrosinemia (T1T) and to enter clinical trials for alkaptonuria. These results boosted the research of new compounds able to interfere with HPPD activity to be used for the treatment of the tyrosine metabolism-related diseases.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Herbicidas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Control de Malezas , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/enzimología , Animales , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/uso terapéutico , Herbicidas/metabolismo , Humanos , Modelos Moleculares , Plantas/efectos de los fármacos , Plantas/enzimología , Bibliotecas de Moléculas Pequeñas/farmacocinética , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Tirosinemias/tratamiento farmacológico , Tirosinemias/enzimología , Control de Malezas/métodos
18.
J Cell Physiol ; 232(11): 3103-3111, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28019670

RESUMEN

Alkaptonuria (AKU) is an ultra-rare genetic disease, in which the accumulation of a toxic metabolite, homogentisic acid (HGA) leads to the systemic development of ochronotic aggregates. These aggregates cause severe complications mainly at the level of joints with extensive degradation of the articular cartilage. Primary cilia have been demonstrated to play an essential role in development and the maintenance of articular cartilage homeostasis, through their involvement in mechanosignaling and Hedgehog signaling pathways. Hedgehog signaling has been demonstrated to be activated in osteoarthritis (OA) and to drive cartilage degeneration in vivo. The numerous similarities between OA and AKU suggest that primary cilia Hedgehog signaling may also be altered in AKU. Thus, we characterized an AKU cellular model in which healthy chondrocytes were treated with HGA (66 µM) to replicate AKU cartilage pathology. We investigated the degree of activation of the Hedgehog signaling pathway and how treatment with inhibitors of the receptor Smoothened (Smo) influenced Hedgehog activation and primary cilia structure. The results obtained in this work provide a further step in the comprehension of the pathophysiological features of AKU, suggesting a potential therapeutic approach to modulate AKU cartilage degradation processes through manipulation of the Hedgehog pathway.


Asunto(s)
Alcaptonuria/inducido químicamente , Anilidas/farmacología , Condrocitos/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Ácido Homogentísico/toxicidad , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/antagonistas & inhibidores , Alcaloides de Veratrum/farmacología , Alcaptonuria/metabolismo , Alcaptonuria/patología , Células Cultivadas , Condrocitos/metabolismo , Condrocitos/patología , Cilios/efectos de los fármacos , Cilios/metabolismo , Cilios/patología , Relación Dosis-Respuesta a Droga , Humanos , Hiperpigmentación/inducido químicamente , Hiperpigmentación/metabolismo , Receptor Smoothened/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo
19.
Biochim Biophys Acta Gen Subj ; 1861(2): 135-146, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27865997

RESUMEN

BACKGROUND: Alkaptonuria (AKU) is an ultra-rare inborn error of metabolism characterized by homogentisic acid (HGA) accumulation due to a deficient activity of the homogentisate 1.2-dioxygenase (HGD) enzyme. This leads to the production of dark pigments that are deposited onto connective tissues, a condition named 'ochronosis' and whose mechanisms are not completely clear. Recently, the potential role of hitherto unidentified proteins in the ochronotic process was hypothesized, and the presence of Serum Amyloid A (SAA) in alkaptonuric tissues was reported, allowing the classification of AKU as a novel secondary amyloidosis. METHODS: Gel electrophoresis, Western Blot, Congo Red-based assays and electron microscopy were used to investigate the effects of HGA on the aggregation and fibrillation propensity of amyloidogenic proteins and peptides [Aß(1-42), transthyretin, atrial natriuretic peptide, α-synuclein and SAA]. LC/MS and in silico analyses were undertaken to identify possible binding sites for HGA (or its oxidative metabolite, a benzoquinone acetate or BQA) in SAA. RESULTS: We found that HGA might act as an amyloid aggregation enhancer in vitro for all the tested proteins and peptides in a time- and dose- dependent fashion, and identified a small crevice at the interface between two HGD subunits as a candidate binding site for HGA/BQA. CONCLUSIONS: HGA might be an important amyloid co- component playing significant roles in AKU amyloidosis. GENERAL SIGNIFICANCE: Our results provide a possible explanation for the clinically verified onset of amyloidotic processes in AKU and might lay the basis to setup proper pharmacological approaches to alkaptonuric ochronosis, which are still lacking.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Ácido Homogentísico/farmacología , Agregación Patológica de Proteínas/inducido químicamente , Alcaptonuria/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Factor Natriurético Atrial/metabolismo , Sitios de Unión/efectos de los fármacos , Tejido Conectivo/efectos de los fármacos , Tejido Conectivo/metabolismo , Homogentisato 1,2-Dioxigenasa/metabolismo , Humanos , Ocronosis/metabolismo , Oxidación-Reducción/efectos de los fármacos , Prealbúmina/metabolismo , Proteína Amiloide A Sérica/metabolismo , alfa-Sinucleína/metabolismo
20.
J Cell Physiol ; 232(7): 1728-1738, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27454006

RESUMEN

Alkaptonuria (AKU) is an ultra-rare autosomal genetic disorder caused by a defect in the activity of the enzyme homogentisate 1,2-dioxygenase (HGD) that leads to the accumulation of homogentisic acid (HGA) and its oxidized product, benzoquinone acetic acid (BQA), in the connective tissues causing a pigmentation called "ochronosis." The consequent progressive formation of ochronotic aggregates generate a severe condition of oxidative stress and inflammation in all the affected areas. Experimental evidences have also proved the presence of serum amyloid A (SAA) in several AKU tissues and it allowed classifying AKU as a secondary amyloidosis. Although AKU is a multisystemic disease, the most affected system is the osteoarticular one and articular cartilage is the most damaged tissue. In this work, we have analyzed for the first time the cytoskeleton of AKU chondrocytes by means of immunofluorescence staining. We have shown the presence of SAA within AKU chondrocytes and finally we have demonstrated the co-localization of SAA with three cytoskeletal proteins: actin, vimentin, and ß-tubulin. Furthermore, in order to observe the ultrastructural features of AKU chondrocytes we have performed TEM analysis, focusing on the Golgi apparatus structure and, to demonstrate that pigmented areas in AKU cartilage are correspondent to areas of oxidation, 4-HNE presence has been evaluated by means of immunofluorescence. J. Cell. Physiol. 232: 1728-1738, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Alcaptonuria/patología , Condrocitos/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Adulto , Anciano , Aldehídos/metabolismo , Biomarcadores/metabolismo , Cartílago Articular/metabolismo , Estudios de Casos y Controles , Condrocitos/ultraestructura , Citoesqueleto/ultraestructura , Femenino , Técnica del Anticuerpo Fluorescente , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Humanos , Peroxidación de Lípido , Masculino , Persona de Mediana Edad , Pigmentos Biológicos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...