Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Adv Ther (Weinh) ; 6(3)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37007587

RESUMEN

Despite advances by recently approved antibody-drug conjugates in treating advanced gastric cancer patients, substantial limitations remain. Here, several key obstacles are overcome by developing a first-in-class ultrasmall (sub-8-nanometer (nm)) anti-human epidermal growth factor receptor 2 (HER2)-targeting drug-immune conjugate nanoparticle therapy. This multivalent fluorescent core-shell silica nanoparticle bears multiple anti-HER2 single-chain variable fragments (scFv), topoisomerase inhibitors, and deferoxamine moieties. Most surprisingly, drawing upon its favorable physicochemical, pharmacokinetic, clearance, and target-specific dual-modality imaging properties in a "hit and run" approach, this conjugate eradicated HER2-expressing gastric tumors without any evidence of tumor regrowth, while exhibiting a wide therapeutic index. Therapeutic response mechanisms are accompanied by the activation of functional markers, as well as pathway-specific inhibition. Results highlight the potential clinical utility of this molecularly engineered particle drug-immune conjugate and underscore the versatility of the base platform as a carrier for conjugating an array of other immune products and payloads.

2.
ACS Nano ; 16(12): 20021-20033, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36264003

RESUMEN

To address the key challenges in the development of next-generation drug delivery systems (DDS) with desired physicochemical properties to overcome limitations regarding safety, in vivo efficacy, and solid tumor penetration, an ultrasmall folate receptor alpha (FRα) targeted silica nanoparticle (C'Dot) drug conjugate (CDC; or folic acid CDC) was developed. A broad array of methods was employed to screen a panel of CDCs and identify a lead folic acid CDC for clinical development. These included comparing the performance against antibody-drug conjugates (ADCs) in three-dimensional tumor spheroid penetration ability, assessing in vitro/ex vivo cytotoxic efficacy, as well as in vivo therapeutic outcome in multiple cell-line-derived and patient-derived xenograft models. An ultrasmall folic acid CDC, EC112002, was identified as the lead candidate out of >500 folic acid CDC formulations evaluated. Systematic studies demonstrated that the lead formulation, EC112002, exhibited highly specific FRα targeting, multivalent binding properties that would mediate the ability to outcompete endogenous folate in vivo, enzymatic responsive payload cleavage, stability in human plasma, rapid in vivo clearance, and minimal normal organ retention organ distribution in non-tumor-bearing mice. When compared with an anti-FRα-DM4 ADC, EC112002 demonstrated deeper penetration into 3D cell-line-derived tumor spheroids and superior specific cytotoxicity in a panel of 3D patient-derived tumor spheroids, as well as enhanced efficacy in cell-line-derived and patient-derived in vivo tumor xenograft models expressing a range of low to high levels of FRα. With the growing interest in developing clinically translatable, safe, and efficacious DDSs, EC112002 has the potential to address some of the critical limitations of the current systemic drug delivery for cancer management.


Asunto(s)
Receptor 1 de Folato , Sistema de Administración de Fármacos con Nanopartículas , Neoplasias , Animales , Humanos , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Receptor 1 de Folato/metabolismo , Receptor 1 de Folato/uso terapéutico , Ácido Fólico/química , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Dióxido de Silicio/uso terapéutico
3.
Clin Cancer Res ; 28(13): 2938-2952, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35499557

RESUMEN

PURPOSE: Despite dramatic growth in the number of small-molecule drugs developed to treat solid tumors, durable therapeutic options to control primary central nervous system malignancies are relatively scarce. Chemotherapeutic agents that appear biologically potent in model systems have often been found to be marginally effective at best when given systemically in clinical trials. This work presents for the first time an ultrasmall (<8 nm) multimodal core-shell silica nanoparticle, Cornell prime dots (or C' dots), for the efficacious treatment of high-grade gliomas. EXPERIMENTAL DESIGN: This work presents first-in-kind renally clearable ultrasmall (<8 nm) multimodal C' dots with surface-conjugated doxorubicin (DOX) via pH-sensitive linkers for the efficacious treatment in two different clinically relevant high-grade glioma models. RESULTS: Optimal drug-per-particle ratios of as-developed nanoparticle-drug conjugates were established and used to obtain favorable pharmacokinetic profiles. The in vivo efficacy results showed significantly improved biological, therapeutic, and toxicological properties over the native drug after intravenous administration in platelet-derived growth factor-driven genetically engineered mouse model, and an EGF-expressing patient-derived xenograft (EGFR PDX) model. CONCLUSIONS: Ultrasmall C' dot-drug conjugates showed great translational potential over DOX for improving the therapeutic outcome of patients with high-grade gliomas, even without a cancer-targeting moiety.


Asunto(s)
Glioma , Nanopartículas , Animales , Línea Celular Tumoral , Doxorrubicina , Sistemas de Liberación de Medicamentos/métodos , Glioma/tratamiento farmacológico , Humanos , Ratones , Dióxido de Silicio , Índice Terapéutico
4.
Quant Imaging Med Surg ; 11(9): 3966-3977, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34476182

RESUMEN

BACKGROUND: Tissue necrosis, a consequence of inadequate tissue oxygenation, is a common post-operative complication. As current surgical assessments are often limited to visual and tactile feedback, additional techniques that can aid in the interrogation of tissue viability are needed to improve patient outcomes. In this bi-institutional pilot study, the performance of a novel snapshot hyperspectral imaging camera to detect superficial cutaneous oxygen saturation (StO2) was evaluated. METHODS: Healthy human volunteers were recruited at two participating centers. Cutaneous StO2 of the forearm was determined by a snapshot hyperspectral camera on two separate study days during occlusion-reperfusion of the brachial artery and after induction of local vasodilation. To calculate the blood StO2 at each pixel in the multispectral image, spectra were selected, and fitting was performed over wavelengths ranging from 470 to 950 nm. RESULTS: Quantitative detection of physiological changes in cutaneous StO2 levels was feasible in all sixteen volunteers. A significant (P<0.001) decrease in cutaneous StO2 levels from 78.3% (SD: 15.3) at baseline to 60.6% (SD: 19.8) at the end of occlusion phase was observed, although StO2 levels returned to baseline after five minutes. Mean cutaneous StO2 values were similar in the same subjects on separate study days (Pearson R2: 0.92 and 0.77, respectively) at both centers. Local vasodilation did not yield significant changes in cutaneous StO2 values. CONCLUSIONS: This pilot study demonstrated the feasibility of a snapshot hyperspectral camera for detecting quantitative physiological changes in cutaneous StO2 in normal human volunteers, and serves as a precursor for further validation in perioperative studies.

5.
JAMA Netw Open ; 4(3): e211936, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33734415

RESUMEN

Importance: Sentinel lymph node (SLN) mapping agents approved for current surgical practice lack sufficient brightness and target specificity for high-contrast, sensitive nodal visualization. Objective: To evaluate whether an ultrasmall, molecularly targeted core-shell silica nanoparticle (Cornell prime dots) can safely and reliably identify optically avid SLNs in head and neck melanoma during fluorescence-guided biopsy. Design, Setting, and Participants: This nonrandomized clinical trial enrolled patients aged 18 years or older with histologically confirmed melanoma in whom SLN mapping was indicated. Exclusion criteria included known pregnancy, breast-feeding, or medical illness unrelated to the tumor. The trial was conducted between February 2015 and March 2018 at Memorial Sloan Kettering Cancer Center, with postoperative follow-up of 2 years. Data analysis was conducted from February 2015 to March 2018. Interventions: Patients received standard-of-care technetium Tc 99m sulfur colloid followed by a microdose administration of integrin-targeting, dye-encapsulated nanoparticles, surface modified with polyethylene glycol chains and cyclic arginine-glycine-aspartic acid-tyrosine peptides (cRGDY-PEG-Cy5.5-nanoparticles) intradermally. Main Outcomes and Measures: The primary end points were safety, procedural feasibility, lowest particle dose and volume for maximizing nodal fluorescence signal, and proportion of nodes identified by technetium Tc 99m sulfur colloid that were optically visualized by cRGDY-PEG-Cy5.5-nanoparticles. Secondary end points included proportion of patients in whom the surgical approach or extent of dissection was altered because of nodal visualization. Results: Of 24 consecutive patients enrolled (median [interquartile range] age, 64 [51-71] years), 18 (75%) were men. In 24 surgical procedures, 40 SLNs were excised. Preoperative localization of SLNs with technetium Tc 99m sulfur colloid was followed by particle dose-escalation studies, yielding optimized doses and volumes of 2 nmol and 0.4 mL, respectively, and maximum SLN signal-to-background ratios of 40. No adverse events were observed. The concordance rate of evaluable SLNs by technetium Tc 99m sulfur colloid and cRGDY-PEG-Cy5.5-nanoparticles was 90% (95% CI, 74%-98%), 5 of which were metastatic. Ultrabright nanoparticle fluorescence enabled high-sensitivity SLN visualization (including difficult-to-access anatomic sites), deep tissue imaging, and, in some instances, detection through intact skin, thereby facilitating intraoperative identification without extensive dissection of adjacent normal tissue or nerves. Conclusions and Relevance: This study found that nanoparticle-based fluorescence-guided SLN biopsy in head and neck melanoma was feasible and safe. This technology holds promise for improving lymphatic mapping and SLN biopsy procedures, while potentially mitigating procedural risks. This study serves as a first step toward developing new multimodal approaches for perioperative care. Trial Registration: ClinicalTrials.gov Identifier: NCT02106598.


Asunto(s)
Neoplasias de Cabeza y Cuello/diagnóstico , Biopsia Guiada por Imagen/métodos , Melanoma/diagnóstico , Nanopartículas , Biopsia del Ganglio Linfático Centinela/métodos , Ganglio Linfático Centinela/patología , Dióxido de Silicio/farmacología , Anciano , Femenino , Humanos , Metástasis Linfática , Masculino , Melanoma/secundario , Persona de Mediana Edad , Cintigrafía , Estudios Retrospectivos
6.
Nat Cell Biol ; 22(9): 1042-1048, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32868903

RESUMEN

Ferroptosis is a regulated form of necrotic cell death that is caused by the accumulation of oxidized phospholipids, leading to membrane damage and cell lysis1,2. Although other types of necrotic death such as pyroptosis and necroptosis are mediated by active mechanisms of execution3-6, ferroptosis is thought to result from the accumulation of unrepaired cell damage1. Previous studies have suggested that ferroptosis has the ability to spread through cell populations in a wave-like manner, resulting in a distinct spatiotemporal pattern of cell death7,8. Here we investigate the mechanism of ferroptosis execution and discover that ferroptotic cell rupture is mediated by plasma membrane pores, similarly to cell lysis in pyroptosis and necroptosis3,4. We further find that intercellular propagation of death occurs following treatment with some ferroptosis-inducing agents, including erastin2,9 and C' dot nanoparticles8, but not upon direct inhibition of the ferroptosis-inhibiting enzyme glutathione peroxidase 4 (GPX4)10. Propagation of a ferroptosis-inducing signal occurs upstream of cell rupture and involves the spreading of a cell swelling effect through cell populations in a lipid peroxide- and iron-dependent manner.


Asunto(s)
Ferroptosis/fisiología , Ósmosis/fisiología , Muerte Celular/fisiología , Línea Celular Tumoral , Células HeLa , Humanos , Hierro/metabolismo , Células MCF-7 , Necrosis/metabolismo , Necrosis/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Células U937
7.
Clin Cancer Res ; 26(20): 5424-5437, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32723835

RESUMEN

PURPOSE: Small-molecule inhibitors have had a major impact on cancer care. While treatments have demonstrated clinically promising results, they suffer from dose-limiting toxicities and the emergence of refractory disease. Considerable efforts made to address these issues have more recently focused on strategies implementing particle-based probes that improve drug delivery and accumulation at target sites, while reducing off-target effects. EXPERIMENTAL DESIGN: Ultrasmall (<8 nm) core-shell silica nanoparticles, C' dots, were molecularly engineered to function as multivalent drug delivery vehicles for significantly improving key in vivo biological and therapeutic properties of a prototype epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, gefitinib. Novel surface chemical components were used to conjugate gefitinib-dipeptide drug-linkers and deferoxamine (DFO) chelators for therapeutic delivery and PET imaging labels, respectively. RESULTS: Gefitinib-bound C' dots (DFO-Gef-C' dots), synthesized using the gefitinib analogue, APdMG, at a range of drug-to-particle ratios (DPR; DPR = 11-56), demonstrated high stability for DPR values≤ 40, bulk renal clearance, and enhanced in vitro cytotoxicity relative to gefitinib (LD50 = 6.21 nmol/L vs. 3 µmol/L, respectively). In human non-small cell lung cancer mice, efficacious Gef-C' dot doses were at least 200-fold lower than that needed for gefitinib (360 nmoles vs. 78 µmoles, respectively), noting fairly equivalent tumor growth inhibition and prolonged survival. Gef-C' dot-treated tumors also exhibited low phosphorylated EFGR levels, with no appreciable wild-type EGFR target inhibition, unlike free drug. CONCLUSIONS: Results underscore the clinical potential of DFO-Gef-C' dots to effectively manage disease and minimize off-target effects at a fraction of the native drug dose.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Gefitinib/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Deferoxamina/química , Deferoxamina/farmacología , Sistemas de Liberación de Medicamentos , Gefitinib/química , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Ratones , Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Dióxido de Silicio/química , Bibliotecas de Moléculas Pequeñas/química
8.
Biomaterials ; 241: 119858, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32120314

RESUMEN

Lutetium-177 (177Lu) radiolabeled ultrasmall (~6 nm dia.) fluorescent core-shell silica nanoparticles (Cornell prime dots or C' dots) were developed for improving efficacy of targeted radiotherapy in melanoma models. PEGylated C' dots were surface engineered to display 10-15 alpha melanocyte stimulating hormone (αMSH) cyclic peptide analogs for targeting the melanocortin-1 receptor (MC1-R) over-expressed on melanoma tumor cells. The 177Lu-DOTA-αMSH-PEG-C' dot product was radiochemically stable, biologically active, and exhibited high affinity cellular binding properties and internalization. Selective tumor uptake and favorable biodistribution properties were also demonstrated, in addition to bulk renal clearance, in syngeneic B16F10 and human M21 xenografted models. Prolonged survival was observed in the treated cohorts relative to controls. Dosimetric analysis showed no excessively high absorbed dose among normal organs. Correlative histopathology of ex vivo treated tumor specimens revealed expected necrotic changes; no acute pathologic findings were noted in the liver or kidneys. Collectively, these results demonstrated that 177Lu-DOTA-αMSH-PEG-C' dot targeted melanoma therapy overcame the unfavorable biological properties and dose-limiting toxicities associated with existing mono-molecular treatments. The unique and tunable surface chemistries of this targeted ultrasmall radiotherapeutic, coupled with its favorable pharmacokinetic properties, substantially improved treatment efficacy and demonstrated a clear survival benefit in melanoma models, which supports its further clinical translation.


Asunto(s)
Melanoma Experimental , Melanoma , Nanopartículas , Animales , Línea Celular Tumoral , Humanos , Melanoma/radioterapia , Dióxido de Silicio , Distribución Tisular , alfa-MSH/metabolismo
9.
Cancer Biother Radiopharm ; 35(6): 459-473, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32013538

RESUMEN

An α particle-emitting nanodrug that is a potent and specific antitumor agent and also prompts significant remodeling of local immunity in the tumor microenvironment (TME) has been developed and may impact the treatment of melanoma. Biocompatible ultrasmall fluorescent core-shell silica nanoparticles (C' dots, diameter ∼6.0 nm) have been engineered to target the melanocortin-1 receptor expressed on melanoma through α melanocyte-stimulating hormone peptides attached to the C' dot surface. Actinium-225 is also bound to the nanoparticle to deliver a densely ionizing dose of high-energy α particles to cancer. Nanodrug pharmacokinetic properties are optimal for targeted radionuclide therapy as they exhibit rapid blood clearance, tumor-specific accumulation, minimal off-target localization, and renal elimination. Potent and specific tumor control, arising from the α particles, was observed in a syngeneic animal model of melanoma. Surprisingly, the C' dot component of this drug initiates a favorable pseudopathogenic response in the TME generating distinct changes in the fractions of naive and activated CD8 T cells, Th1 and regulatory T cells, immature dendritic cells, monocytes, MΦ and M1 macrophages, and activated natural killer cells. Concomitant upregulation of the inflammatory cytokine genome and adaptive immune pathways each describes a macrophage-initiated pseudoresponse to a viral-shaped pathogen. This study suggests that therapeutic α-particle irradiation of melanoma using ultrasmall functionalized core-shell silica nanoparticles potently kills tumor cells, and at the same time initiates a distinct immune response in the TME.


Asunto(s)
Partículas alfa/uso terapéutico , Portadores de Fármacos/química , Melanoma Experimental/radioterapia , Radiofármacos/administración & dosificación , Neoplasias Cutáneas/radioterapia , Microambiente Tumoral/efectos de la radiación , Actinio/administración & dosificación , Actinio/farmacocinética , Animales , Línea Celular Tumoral/trasplante , Biología Computacional , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Femenino , Regulación Neoplásica de la Expresión Génica/inmunología , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Inmunidad Celular/genética , Inmunidad Celular/efectos de la radiación , Masculino , Dosis Máxima Tolerada , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Terapia Molecular Dirigida/métodos , Nanopartículas/química , RNA-Seq , Radiofármacos/farmacocinética , Receptor de Melanocortina Tipo 1/antagonistas & inhibidores , Receptor de Melanocortina Tipo 1/metabolismo , Dióxido de Silicio/química , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Distribución Tisular , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
10.
Clin Cancer Res ; 26(1): 147-158, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31515460

RESUMEN

PURPOSE: Small-molecule inhibitors have revolutionized treatment of certain genomically defined solid cancers. Despite breakthroughs in treating systemic disease, central nervous system (CNS) metastatic progression is common, and advancements in treating CNS malignancies remain sparse. By improving drug penetration across a variably permeable blood-brain barrier and diffusion across intratumoral compartments, more uniform delivery and distribution can be achieved to enhance efficacy. EXPERIMENTAL DESIGN: Ultrasmall fluorescent core-shell silica nanoparticles, Cornell prime dots (C' dots), were functionalized with αv integrin-binding (cRGD), or nontargeting (cRAD) peptides, and PET labels (124I, 89Zr) to investigate the utility of dual-modality cRGD-C' dots for enhancing accumulation, distribution, and retention (ADR) in a genetically engineered mouse model of glioblastoma (mGBM). mGBMs were systemically treated with 124I-cRGD- or 124I-cRAD-C' dots and sacrificed at 3 and 96 hours, with concurrent intravital injections of FITC-dextran for mapping blood-brain barrier breakdown and the nuclear stain Hoechst. We further assessed target inhibition and ADR following attachment of dasatinib, creating nanoparticle-drug conjugates (Das-NDCs). Imaging findings were confirmed with ex vivo autoradiography, fluorescence microscopy, and p-S6RP IHC. RESULTS: Improvements in brain tumor delivery and penetration, as well as enhancement in the ADR, were observed following administration of integrin-targeted C' dots, as compared with a nontargeted control. Furthermore, attachment of the small-molecule inhibitor, dasatinib, led to its successful drug delivery throughout mGBM, demonstrated by downstream pathway inhibition. CONCLUSIONS: These results demonstrate that highly engineered C' dots are promising drug delivery vehicles capable of navigating the complex physiologic barriers observed in a clinically relevant brain tumor model.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Dasatinib/farmacología , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Nanopartículas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Dióxido de Silicio/química , Animales , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Dasatinib/química , Modelos Animales de Enfermedad , Glioblastoma/patología , Radioisótopos de Yodo/química , Ratones , Nanopartículas/química , Clasificación del Tumor , Oligopéptidos/química , Tomografía de Emisión de Positrones/métodos , Inhibidores de Proteínas Quinasas/química , Radioisótopos/química , Circonio/química
11.
Sci Adv ; 5(12): eaax5208, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31840066

RESUMEN

Accurate detection and quantification of metastases in regional lymph nodes remain a vital prognostic predictor for cancer staging and clinical outcomes. As intratumoral heterogeneity poses a major hurdle to effective treatment planning, more reliable image-guided, cancer-targeted optical multiplexing tools are critically needed in the operative suite. For sentinel lymph node mapping indications, accurately interrogating distinct molecular signatures on cancer cells in vivo with differential levels of sensitivity and specificity remains largely unexplored. To address these challenges and demonstrate sensitivity to detecting micrometastases, we developed batches of spectrally distinct 6-nm near-infrared fluorescent core-shell silica nanoparticles, each batch surface-functionalized with different melanoma targeting ligands. Along with PET imaging, particles accurately detected and molecularly phenotyped cancerous nodes in a spontaneous melanoma miniswine model using image-guided multiplexing tools. Information afforded from these tools offers the potential to not only improve the accuracy of targeted disease removal and patient safety, but to transform surgical decision-making for oncological patients.


Asunto(s)
Melanoma/genética , Melanoma/cirugía , Nanopartículas/química , Tamaño de la Partícula , Dióxido de Silicio/química , Cirugía Asistida por Computador , Animales , Línea Celular Tumoral , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Melanoma/diagnóstico por imagen , Ratones , Imagen Multimodal , Nanopartículas/ultraestructura , Imagen Óptica , Fenotipo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Biopsia del Ganglio Linfático Centinela , Porcinos , Porcinos Enanos
12.
ACS Appl Mater Interfaces ; 11(47): 43879-43887, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31675204

RESUMEN

Although important advances have been achieved in the development of radiolabeled prostate-specific membrane antigen (PSMA)-targeting ligand constructs for both diagnosis and therapy of prostate cancer (PCa) over the past decade, challenges related to off-target effects and limited treatment responses persist. In this study, which builds upon the successful clinical translation of a series of ultrasmall, dye-encapsulating core-shell silica nanoparticles, or Cornell Prime Dots (C' dots), for cancer management, we sought to address these limitations by designing a dual-modality, PSMA-targeting platform that evades undesirable accumulations in the salivary glands, kidneys, and reticuloendothelial system, while exhibiting bulk renal clearance. This versatile PCa-targeted particle imaging probe offers significant clinical potential to improve future theranostic applications in a variety of patient care settings.


Asunto(s)
Riñón/metabolismo , Nanopartículas/metabolismo , Tomografía de Emisión de Positrones/instrumentación , Dióxido de Silicio/metabolismo , Animales , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Nanopartículas/química , Antígeno Prostático Específico/antagonistas & inhibidores , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Dióxido de Silicio/química , Nanomedicina Teranóstica
13.
Trends Cancer ; 5(9): 558-568, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31474361

RESUMEN

Cell death can occur through numerous regulated mechanisms that are categorized by their molecular machineries and differing effects on physiology. Apoptosis and necrosis, for example, have opposite effects on tissue inflammation due to their different modes of execution. Another feature that can distinguish different forms of cell death is that they have distinct intrinsic effects on the cell populations in which they occur. For example, a regulated mechanism of necrosis called ferroptosis has the unusual ability to spread between cells in a wave-like manner, thereby eliminating entire cell populations. Here we discuss the ways in which cell death can propagate between cells in normal physiology and disease, as well as the potential exploitation of cell death propagation for cancer therapy.


Asunto(s)
Apoptosis/fisiología , Entosis/fisiología , Ferroptosis/fisiología , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Efecto Espectador/efectos de los fármacos , Efecto Espectador/efectos de la radiación , Entosis/efectos de los fármacos , Entosis/efectos de la radiación , Ferroptosis/efectos de los fármacos , Ferroptosis/efectos de la radiación , Humanos , Modelos Animales , Neoplasias/terapia , Radioterapia/métodos
14.
Clin Cancer Res ; 25(4): 1226-1232, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30487127

RESUMEN

PURPOSE: Spatial and temporal patterns of response of human glioblastoma to fractionated chemoradiation are described by changes in the bioscales of residual tumor volume (RTV), tumor cell volume fraction (CVF), and tumor cell kill (TCK), as derived from tissue sodium concentration (TSC) measured by quantitative sodium MRI at 3 Tesla. These near real-time patterns during treatment are compared with overall survival. EXPERIMENTAL DESIGN: Bioscales were mapped during fractionated chemoradiation therapy in patients with glioblastomas (n = 20) using TSC obtained from serial quantitative sodium MRI at 3 Tesla and a two-compartment model of tissue sodium distribution. The responses of these parameters in newly diagnosed human glioblastomas undergoing treatment were compared with time-to-disease progression and survival. RESULTS: RTV following tumor resection showed decreased CVF due to disruption of normal cell packing by edema and infiltrating tumor cells. CVF showed either increases back toward normal as infiltrating tumor cells were killed, or decreases as cancer cells continued to infiltrate and extend tumor margins. These highly variable tumor responses showed no correlation with time-to-progression or overall survival. CONCLUSIONS: These bioscales indicate that fractionated chemoradiotherapy of glioblastomas produces variable responses with low cell killing efficiency. These parameters are sensitive to real-time changes within the treatment volume while remaining stable elsewhere, highlighting the potential to individualize therapy earlier in management, should alternative strategies be available.


Asunto(s)
Quimioradioterapia , Glioblastoma/diagnóstico por imagen , Neoplasia Residual/diagnóstico por imagen , Adulto , Anciano , Tamaño de la Célula/efectos de los fármacos , Tamaño de la Célula/efectos de la radiación , Progresión de la Enfermedad , Fraccionamiento de la Dosis de Radiación , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/radioterapia , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neoplasia Residual/tratamiento farmacológico , Neoplasia Residual/patología , Neoplasia Residual/radioterapia , Sodio/uso terapéutico , Carga Tumoral/efectos de los fármacos , Carga Tumoral/efectos de la radiación
15.
Nat Commun ; 9(1): 4141, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297810

RESUMEN

Controlling the biodistribution of nanoparticles upon intravenous injection is the key to achieving target specificity. One of the impediments in nanoparticle-based tumor targeting is the inability to limit the trafficking of nanoparticles to liver and other organs leading to smaller accumulated amounts in tumor tissues, particularly via passive targeting. Here we overcome both these challenges by designing nanoparticles that combine the specificity of antibodies with favorable particle biodistribution profiles, while not exceeding the threshold for renal filtration as a combined vehicle. To that end, ultrasmall silica nanoparticles are functionalized with anti-human epidermal growth factor receptor 2 (HER2) single-chain variable fragments to exhibit high tumor-targeting efficiency and efficient renal clearance. This ultrasmall targeted nanotheranostics/nanotherapeutic platform has broad utility, both for imaging a variety of tumor tissues by suitably adopting the targeting fragment and as a potentially useful drug delivery vehicle.


Asunto(s)
Neoplasias de la Mama/metabolismo , Nanopartículas/química , Receptor ErbB-2/metabolismo , Anticuerpos de Cadena Única/química , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/prevención & control , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Femenino , Humanos , Ratones , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Tomografía de Emisión de Positrones , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Dióxido de Silicio/química , Anticuerpos de Cadena Única/administración & dosificación , Anticuerpos de Cadena Única/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
17.
ACS Nano ; 12(1): 24-43, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29257865

RESUMEN

Ongoing research into the application of nanotechnology for cancer treatment and diagnosis has demonstrated its advantages within contemporary oncology as well as its intrinsic limitations. The National Cancer Institute publishes the Cancer Nanotechnology Plan every 5 years since 2005. The most recent iteration helped codify the ongoing basic and translational efforts of the field and displayed its breadth with several evolving areas. From merely a technological perspective, this field has seen tremendous growth and success. However, an incomplete understanding of human cancer biology persists relative to the application of nanoscale materials within contemporary oncology. As such, this review presents several evolving areas in cancer nanotechnology in order to identify key clinical and biological challenges that need to be addressed to improve patient outcomes. From this clinical perspective, a sampling of the nano-enabled solutions attempting to overcome barriers faced by traditional therapeutics and diagnostics in the clinical setting are discussed. Finally, a strategic outlook of the future is discussed to highlight the need for next-generation cancer nanotechnology tools designed to address critical gaps in clinical cancer care.


Asunto(s)
Nanomedicina/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Animales , Humanos , Inmunoterapia/métodos , Nanotecnología/métodos , National Cancer Institute (U.S.) , Metástasis de la Neoplasia/diagnóstico , Metástasis de la Neoplasia/radioterapia , Metástasis de la Neoplasia/terapia , Neoplasias/radioterapia , Neoplasias/cirugía , Cirugía Asistida por Computador/métodos , Resultado del Tratamiento , Estados Unidos
18.
ACS Appl Mater Interfaces ; 10(5): 4379-4393, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29058865

RESUMEN

The poor prognosis associated with malignant melanoma has not changed substantially over the past 30 years. Targeted molecular therapies, such as immunotherapy, have shown promise but suffer from resistance and off-target toxicities, underscoring the need for alternative therapeutic strategies that can be used in combination with existing protocols. Moreover, peptides targeting melanoma-specific markers, like the melanocortin-1 receptor (MC1-R), for imaging and therapy exhibit high renal uptake that limits clinical translation. In the current study, the application of ultrasmall fluorescent (Cy5) silica nanoparticles (C' dots), conjugated with MC1-R targeting alpha melanocyte stimulating hormone (αMSH) peptides on the polyethylene glycol (PEG) coated surface, is examined for melanoma-selective imaging. αMSH peptide sequences, evaluated for conjugation to the PEG-Cy5-C' dot nanoparticles, bound to MC1-R with high affinity and targeted melanoma in syngenetic and xenografted melanoma mouse models. Results demonstrated a 10-fold improvement in MC1-R affinity over the native peptide alone following surface attachment of the optimal αMSH peptide. Systematic in vivo studies further demonstrated favorable in vivo renal clearance kinetics as well as receptor-mediated tumor cell internalization of as-developed radiolabeled particle tracers in B16F10 melanoma bearing mice. These findings highlight the ability of αMSH-PEG-Cy5-C' dots to overcome previous hurdles that prevented clinical translation of peptide and antibody-based melanoma probes and reveal the potential of αMSH-PEG-Cy5-C' dots for melanoma-selective imaging, image-guided surgery, and therapeutic applications.


Asunto(s)
Nanopartículas , Animales , Humanos , Melanoma , Melanoma Experimental , Ratones , Receptor de Melanocortina Tipo 1 , Dióxido de Silicio , alfa-MSH
19.
Chem Mater ; 29(19): 8269-8281, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29123332

RESUMEN

Designing a nanomaterials platform with high target-to-background ratios has long been one of the major challenges in the field of nanomedicine. Here, we introduce a "target-or-clear" multifunctional nanoparticle platform that demonstrates high tumor-targeting efficiency and retention while minimizing off-target effects. Encouraged by the favorable preclinical and clinical pharmacokinetic profiles derived after fine-tuning surface chemical properties of radioiodinated (124I, t1/2 = 100.2 h) ultrasmall cRGDY-conjugated fluorescent silica nanoparticles (C dots), we sought to investigate how the biological properties of these radioconjugates could be influenced by the conjugation of radiometals such as zirconium-89 (89Zr, t1/2 = 78.4 h) using two different strategies: chelator-free and chelator-based radiolabeling. The attachment of 89Zr to newer, surface-aminated, integrin-targeting C' dots using a two-pot synthesis approach led to favorable pharmacokinetics and clearance profiles as well as high tumor uptake and target-to-background ratios in human melanoma models relative to biological controls while maintaining particle sizes below the effective renal glomerular filtration size cutoff <10 nm. Nanoconjugates were also characterized in terms of their radiostability and plasma residence half-lives. Our 89Zr-labeled ultrasmall hybrid organic-inorganic particle is a clinically promising positron emission tomography tracer offering radiobiological properties suitable for enhanced molecularly targeted cancer imaging applications.

20.
Chem Mater ; 29(20): 8766-8779, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29129959

RESUMEN

Although a large body of literature exists on the potential use of nanoparticles for medical applications, the number of probes translated into human clinical trials is remarkably small. A major challenge of particle probe development and their translation is the elucidation of safety profiles associated with their structural complexity, not only in terms of size distribution and heterogeneities in particle composition but also their effects on biological activities and the relationship between particle structure and pharmacokinetics. Here, we report on the synthesis, characterization, and long-term stability of ultrasmall (<10 nm diameter) dual-modality (optical and positron emission tomography) and integrintargeting silica nanoparticles (cRGDY-PEG-Cy5-C' dots and 124I-(or 131I-) cRGDY-PEG-Cy5-C'dots) and the extent to which their surface ligand density differentially modulates key in vitro and in vivo biological activities in melanoma models over a range of ligand numbers (i.e., ~6-18). Gel permeation chromatography, established as an important particle characterization tool, revealed a two-year shelf life for cRGDY-PEG-Cy5-C' dots. Radiochromatography further demonstrated the necessary radiochemical stability for clinical applications. The results of subsequent ligand density-dependent studies elucidate strong modulations in biological response, including statistically significant increases in integrin-specific targeting and particle uptake, cellular migration and adhesion, renal clearance, and tumor-to-blood ratios with increasing ligand number. We anticipate that nanoprobe characteristics and a better understanding of the structure-function relationships determined in this study will help guide identification of other lead nanoparticle candidates for in vitro and in vivo biological assessments and product translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...