Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 956
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38712429

RESUMEN

Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 hours at PEEP=1cmH2O and compared to bleomycin treated group ventilated protectively with PEEP=5cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterwards lungs were fixed at end-inspiration or end-expiration for design-based stereology. Prior to VILI, bleomycin challenge reduced the number of open alveoli (N(alvair,par)) by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius up to 56 µm. After PEEP=5cmH2O ventilation for 6 hours, N(alvair,par) remained stable while PEEP=1cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasi-static compliance and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases which most likely occurs due to by stress concentration-induced local vascular leak and surfactant dysfunction.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38712433

RESUMEN

Quantitative characterization of lung structures by morphometric or stereologic analysis of histologic sections is a powerful means of elucidating pulmonary structure-function relations. The overwhelming majority of studies, however, fix lungs for histology at pressures outside the physiologic/pathophysiologic respiratory volume range. Thus valuable information is being lost. In this perspective article, we argue that investigators performing pulmonary histologic studies should consider whether the aims of their studies would benefit from fixation at functional transpulmonary pressures, particular those of end-inspiration and end-expiration. We survey the pressures at which lungs are typically fixed in preclinical structure-function studies; provide examples of conditions that would benefit from histologic evaluation at functional lung volumes; summarize available fixation methods; discuss alternative imaging modalities; and discuss challenges to implementing the suggested approach and means of addressing those challenges. We aim to persuade investigators that modifying or complementing the traditional histologic approach by fixing lungs at minimal and maximal functional volumes could enable new understanding of pulmonary structure-function relations.

3.
Radiology ; 311(2): e230750, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713024

RESUMEN

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion-guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61-71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0-3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.


Asunto(s)
Aprendizaje Profundo , Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Estudios Prospectivos , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Persona de Mediana Edad , Algoritmos , Próstata/diagnóstico por imagen , Próstata/patología , Biopsia Guiada por Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos
4.
Oncotarget ; 15: 288-300, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712741

RESUMEN

PURPOSE: Sequential PET/CT studies oncology patients can undergo during their treatment follow-up course is limited by radiation dosage. We propose an artificial intelligence (AI) tool to produce attenuation-corrected PET (AC-PET) images from non-attenuation-corrected PET (NAC-PET) images to reduce need for low-dose CT scans. METHODS: A deep learning algorithm based on 2D Pix-2-Pix generative adversarial network (GAN) architecture was developed from paired AC-PET and NAC-PET images. 18F-DCFPyL PSMA PET-CT studies from 302 prostate cancer patients, split into training, validation, and testing cohorts (n = 183, 60, 59, respectively). Models were trained with two normalization strategies: Standard Uptake Value (SUV)-based and SUV-Nyul-based. Scan-level performance was evaluated by normalized mean square error (NMSE), mean absolute error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Lesion-level analysis was performed in regions-of-interest prospectively from nuclear medicine physicians. SUV metrics were evaluated using intraclass correlation coefficient (ICC), repeatability coefficient (RC), and linear mixed-effects modeling. RESULTS: Median NMSE, MAE, SSIM, and PSNR were 13.26%, 3.59%, 0.891, and 26.82, respectively, in the independent test cohort. ICC for SUVmax and SUVmean were 0.88 and 0.89, which indicated a high correlation between original and AI-generated quantitative imaging markers. Lesion location, density (Hounsfield units), and lesion uptake were all shown to impact relative error in generated SUV metrics (all p < 0.05). CONCLUSION: The Pix-2-Pix GAN model for generating AC-PET demonstrates SUV metrics that highly correlate with original images. AI-generated PET images show clinical potential for reducing the need for CT scans for attenuation correction while preserving quantitative markers and image quality.


Asunto(s)
Aprendizaje Profundo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Persona de Mediana Edad , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Radiofármacos , Reproducibilidad de los Resultados
5.
Ann Plast Surg ; 92(6): 667-676, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38725110

RESUMEN

INTRODUCTION: A common consideration for replantation success is the ischemia time following injury and the preservation temperature. A classic principle within the hand surgery community describes 12 hours of warm ischemia and 24 hours of cold ischemia as the upper limits for digit replantation; however, these limits are largely anecdotal and based on older studies. We aimed to compare survival data from the large body of literature to aid surgeons and all those involved in the replantation process in hopes of optimizing success rates. METHODS: The PubMed database was queried on April 4th, 2023, for articles that included data on digit replantation survival in terms of temperature of preservation and ischemia time. All primary outcomes were analyzed with the Mantel-Haenszel method within a random effects model. Secondary outcomes were pooled and analyzed using the chi-square statistic. Statistical analysis and forest plot generation were completed with RevMan 5.4 software with odds ratios calculated within a 95% confidence interval. RESULTS: Our meta-analysis identified that digits preserved in cold ischemia for over 12 hours had significantly higher odds of replantation success than the amputated digits replanted with 0-12 hours of warm ischemia time ( P ≤ 0.05). The odds of survival in the early (0-6 hours) replantation group were around 40% greater than the later (6-12 hours) replantation group ( P ≤ 0.05). Secondary outcomes that were associated with higher survival rates included a clean-cut amputation, increased venous and arterial anastomosis, a repair that did not require a vein graft, and replants performed in nonsmokers ( P ≤ 0.05). DISCUSSION: Overall, these findings suggest that when predicting digit replantation success, time is of the essence when the digit has yet to be preserved in a cold environment. This benefit, however, is almost completely diminished when the amputated digit is appropriately maintained in a cold environment soon after injury. In conclusion, our results suggest that there is potential for broadening the ischemia time limits for digit replant survival outlined in the literature, particularly for digits that have been stored correctly in cold ischemia.


Asunto(s)
Amputación Traumática , Traumatismos de los Dedos , Reimplantación , Humanos , Reimplantación/métodos , Amputación Traumática/cirugía , Traumatismos de los Dedos/cirugía , Factores de Tiempo , Dedos/irrigación sanguínea , Dedos/cirugía , Isquemia Tibia , Isquemia Fría , Isquemia/cirugía , Temperatura
6.
J Neuroeng Rehabil ; 21(1): 80, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755606

RESUMEN

BACKGROUND: Individuals with a moderate-to-severe traumatic brain injury (m/sTBI), despite experiencing good locomotor recovery six months post-injury, face challenges in adapting their locomotion to the environment. They also present with altered cognitive functions, which may impact dual-task walking abilities. Whether they present collision avoidance strategies with moving pedestrians that are altered under dual-task conditions, however, remains unclear. This study aimed to compare between individuals with m/sTBI and age-matched control individuals: (1), the locomotor and cognitive costs associated with the concurrent performance of circumventing approaching virtual pedestrians (VRPs) while attending to an auditory-based cognitive task and; (2) gaze behaviour associated with the VRP circumvention task in single and dual-task conditions. METHODOLOGY: Twelve individuals with m/sTBI (age = 43.3 ± 9.5 yrs; >6 mo. post injury) and 12 healthy controls (CTLs) (age = 41.8 ± 8.3 yrs) were assessed while walking in a virtual subway station viewed in a head-mounted display. They performed a collision avoidance task with VRPs, as well as auditory-based cognitive tasks (pitch discrimination and auditory Stroop), both under single and dual-task conditions. Dual-task cost (DTC) for onset distance of trajectory deviation, minimum distance from the VRP, maximum lateral deviation, walking speed, gaze fixations and cognitive task accuracy were contrasted between groups using generalized estimating equations. RESULTS: In contrast to CTLs who showed locomotor DTCs only, individuals with m/sTBI displayed both locomotor and cognitive DTCs. While both groups walked slower under dual-task conditions, only individuals with m/sTBI failed to modify their onset distance of trajectory deviation and maintained smaller minimum distances and smaller maximum lateral deviation compared to single-task walking. Both groups showed shorter gaze fixations on the approaching VRP under dual-task conditions, but this reduction was less pronounced in the individuals with m/sTBI. A reduction in cognitive task accuracy under dual-task conditions was found in the m/sTBI group only. CONCLUSION: Individuals with m/sTBI present altered locomotor and gaze behaviours, as well as altered cognitive performances, when executing a collision avoidance task involving moving pedestrians in dual-task conditions. Potential mechanisms explaining those alterations are discussed. Present findings highlight the compromised complex walking abilities in individuals with m/sTBI who otherwise present a good locomotor recovery.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Peatones , Realidad Virtual , Humanos , Masculino , Adulto , Femenino , Lesiones Traumáticas del Encéfalo/rehabilitación , Lesiones Traumáticas del Encéfalo/psicología , Lesiones Traumáticas del Encéfalo/fisiopatología , Persona de Mediana Edad , Desempeño Psicomotor/fisiología , Caminata/fisiología , Cognición/fisiología , Reacción de Prevención , Atención/fisiología
7.
Front Netw Physiol ; 4: 1392701, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757066

RESUMEN

Introduction: Acute respiratory distress syndrome (ARDS) presents a significant clinical challenge, with ventilator-induced lung injury (VILI) being a critical complication arising from life-saving mechanical ventilation. Understanding the spatial and temporal dynamics of VILI can inform therapeutic strategies to mitigate lung damage and improve outcomes. Methods: Histological sections from initially healthy mice and pulmonary lavage-injured mice subjected to a second hit of VILI were segmented with Ilastik to define regions of lung injury. A scale-free network approach was applied to assess the correlation between injury regions, with regions of injury represented as 'nodes' in the network and 'edges' quantifying the degree of correlation between nodes. A simulated time series analysis was conducted to emulate the temporal sequence of injury events. Results: Automated segmentation identified different lung regions in good agreement with manual scoring, achieving a sensitivity of 78% and a specificity of 85% across 'injury' pixels. Overall accuracy across 'injury', 'air', and 'other' pixels was 81%. The size of injured regions followed a power-law distribution, suggesting a 'rich-get-richer' phenomenon in the distribution of lung injury. Network analysis revealed a scale-free distribution of injury correlations, highlighting hubs of injury that could serve as focal points for therapeutic intervention. Simulated time series analysis further supported the concept of secondary injury events following an initial insult, with patterns resembling those observed in seismological studies of aftershocks. Conclusion: The size distribution of injured regions underscores the spatially heterogeneous nature of acute and ventilator-induced lung injury. The application of network theory demonstrates the emergence of injury 'hubs' that are consistent with a 'rich-get-richer' dynamic. Simulated time series analysis demonstrates that the progression of injury events in the lung could follow spatiotemporal patterns similar to the progression of aftershocks in seismology, providing new insights into the mechanisms of injury distribution and propagation. Both phenomena suggest a potential for interventions targeting these injury 'hubs' to reduce the impact of VILI in ARDS management.

8.
Neurosci Biobehav Rev ; 162: 105718, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38744350

RESUMEN

Our understanding of the neural control of human walking has changed significantly over the last twenty years and mobile brain imaging methods have contributed substantially to current knowledge. High-density electroencephalography (EEG) has the advantages of being lightweight and mobile while providing temporal resolution of brain changes within a gait cycle. Advances in EEG hardware and processing methods have led to a proliferation of research on the neural control of locomotion in neurologically intact adults. We provide a narrative review of the advantages and disadvantages of different mobile brain imaging methods, then summarize findings from mobile EEG studies quantifying electrocortical activity during human walking. Contrary to historical views on the neural control of locomotion, recent studies highlight the widespread involvement of many areas, such as the anterior cingulate, posterior parietal, prefrontal, premotor, sensorimotor, supplementary motor, and occipital cortices, that show active fluctuations in electrical power during walking. The electrocortical activity changes with speed, stability, perturbations, and gait adaptation. We end with a discussion on the next steps in mobile EEG research.

9.
J Vasc Interv Radiol ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599280

RESUMEN

PURPOSE: To evaluate the performance of a prototype flexible transbronchial cryoprobe compared with that of percutaneous transthoracic cryoablation and to define cone-beam computed tomography (CT) imaging and pathology cryolesion features in an in vivo swine model. MATERIALS AND METHODS: Transbronchial cryoablation was performed with a prototype flexible cryoprobe (3 central and 3 peripheral lung ablations in 3 swine) and compared with transthoracic cryoablation performed with a commercially available rigid cryoprobe (2 peripheral lung ablations in 1 swine). Procedural time and cryoablation success rates for endobronchial navigation and cryoneedle deployment were measured. Intraoperative cone-beam CT imaging features of cryolesions were characterized and correlated with gross pathology and hematoxylin and eosin-stained sections of the explanted cryolesions. RESULTS: The flexible cryoprobe was successfully navigated and delivered to each target through a steerable guiding sheath (6/6). At 4 minutes after ablation, 5 of 6 transbronchial and 2 of 2 transthoracic cryolesions were visible on cone-beam CT. The volumes on cone-beam CT images were 55.5 cm3 (SE ± 8.0) for central transbronchial ablations (n = 2), 72.5 cm3 (SE ± 8.1) for peripheral transbronchial ablations (n = 3), and 79.5 cm3 (SE ±11.6) for peripheral transthoracic ablations (n = 2). Pneumothorax developed in 1 animal after transbronchial ablation and during ablation in the transthoracic cryoablation. Images of cryoablation zones on cone-beam CT correlated well with the matched gross pathology and histopathology sections of the cryolesions. CONCLUSIONS: Transbronchial cryoablation with a flexible cryoprobe, delivered through a steerable guiding sheath, is feasible. Transbronchial cryoablation zones are imageable with cone-beam CT, with gross pathology and histopathology similar to those of transthoracic cryoablation.

10.
Urol Oncol ; 42(7): 222.e1-222.e7, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614921

RESUMEN

INTRODUCTION: Delayed bleeding is a potentially serious complication after partial nephrectomy (PN), with reported rates of 1%-2%. Patients with multiple renal tumors, including those with hereditary forms of kidney cancer, are often managed with resection of multiple tumors in a single kidney which may increase the risk of delayed bleeding, though outcomes have not previously been reported specifically in this population. The objective of this study was to evaluate the incidence and timing of delayed bleeding as well as the impact of intervention on renal functional outcomes in a cohort primarily made up of patients at risk for bilateral, multifocal renal tumors. METHODS: A retrospective review of a prospectively maintained database of patients with known or suspected predisposition to bilateral, multifocal renal tumors who underwent PN from 2003 to 2023 was conducted. Patients who presented with delayed bleeding were identified. Patients with delayed bleeding were compared to those without. Comparative statistics and univariate logistic regression were used to determine potential risk factors for delayed bleeding. RESULTS: A total of 1256 PN were performed during the study period. Angiographic evidence of pseudoaneurysm, AV fistula and/or extravasation occurred in 24 cases (1.9%). Of these, 21 were symptomatic presenting with gross hematuria in 13 (54.2%), decreasing hemoglobin in 4(16.7%), flank pain in 2(8.3%), and mental status change in 2 (8.3%), while 3 patients were asymptomatic. Median number of resected tumors was 5 (IQR 2-8). All patients underwent angiogram with super-selective embolization. Median time to bleed event was 13.5 days (IQR 7-22). Factors associated with delayed bleeding included open approach (OR 2.2, IQR(1.06-5.46), P = 0.04 and left-sided surgery (OR 4.93, IQR(1.67-14.5), P = 0.004. Selective embolization had little impact on ultimate renal functional outcomes, with a median change of 11% from the baseline eGFR after partial nephrectomy and embolization. One patient required total nephrectomy for refractory bleeding after embolization. CONCLUSIONS: Delayed bleeding after PN in a cohort of patients with multifocal tumors is an infrequent event, with similar rates to single tumor series. Patients should be counseled regarding timing and symptoms of delayed bleeding and multidisciplinary management with interventional radiology is critical for timely diagnosis and treatment.


Asunto(s)
Neoplasias Renales , Nefrectomía , Hemorragia Posoperatoria , Humanos , Nefrectomía/métodos , Nefrectomía/efectos adversos , Neoplasias Renales/cirugía , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Incidencia , Hemorragia Posoperatoria/etiología , Hemorragia Posoperatoria/epidemiología , Anciano , Factores de Tiempo , Factores de Riesgo , Recurrencia Local de Neoplasia/cirugía
11.
Sci Rep ; 14(1): 8080, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582767

RESUMEN

Pre-injured lungs are prone to injury progression in response to mechanical ventilation. Heterogeneous ventilation due to (micro)atelectases imparts injurious strains on open alveoli (known as volutrauma). Hence, recruitment of (micro)atelectases by positive end-expiratory pressure (PEEP) is necessary to interrupt this vicious circle of injury but needs to be balanced against acinar overdistension. In this study, the lung-protective potential of alveolar recruitment was investigated and balanced against overdistension in pre-injured lungs. Mice, treated with empty vector (AdCl) or adenoviral active TGF-ß1 (AdTGF-ß1) were subjected to lung mechanical measurements during descending PEEP ventilation from 12 to 0 cmH2O. At each PEEP level, recruitability tests consisting of two recruitment maneuvers followed by repetitive forced oscillation perturbations to determine tissue elastance (H) and damping (G) were performed. Finally, lungs were fixed by vascular perfusion at end-expiratory airway opening pressures (Pao) of 20, 10, 5 and 2 cmH2O after a recruitment maneuver, and processed for design-based stereology to quantify derecruitment and distension. H and G were significantly elevated in AdTGF-ß1 compared to AdCl across PEEP levels. H was minimized at PEEP = 5-8 cmH2O and increased at lower and higher PEEP in both groups. These findings correlated with increasing septal wall folding (= derecruitment) and reduced density of alveolar number and surface area (= distension), respectively. In AdTGF-ß1 exposed mice, 27% of alveoli remained derecruited at Pao = 20 cmH2O. A further decrease in Pao down to 2 cmH2O showed derecruitment of an additional 1.1 million alveoli (48%), which was linked with an increase in alveolar size heterogeneity at Pao = 2-5 cmH2O. In AdCl, decreased Pao resulted in septal folding with virtually no alveolar collapse. In essence, in healthy mice alveoli do not derecruit at low PEEP ventilation. The potential of alveolar recruitability in AdTGF-ß1 exposed mice is high. H is optimized at PEEP 5-8 cmH2O. Lower PEEP folds and larger PEEP stretches septa which results in higher H and is more pronounced in AdTGF-ß1 than in AdCl. The increased alveolar size heterogeneity at Pao = 5 cmH2O argues for the use of PEEP = 8 cmH2O for lung protective mechanical ventilation in this animal model.


Asunto(s)
Atelectasia Pulmonar , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Respiración con Presión Positiva/métodos , Pulmón , Alveolos Pulmonares/fisiología
12.
Clin Nucl Med ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38651785

RESUMEN

PURPOSE: Prostate-specific membrane antigen (PSMA)-targeting PET radiotracers reveal physiologic uptake in the urinary system, potentially misrepresenting activity in the prostatic urethra as an intraprostatic lesion. This study examined the correlation between midline 18F-DCFPyL activity in the prostate and hyperintensity on T2-weighted (T2W) MRI as an indication of retained urine in the prostatic urethra. PATIENTS AND METHODS: Eighty-five patients who underwent both 18F-DCFPyL PSMA PET/CT and prostate MRI between July 2017 and September 2023 were retrospectively analyzed for midline radiotracer activity and retained urine on postvoid T2W MRIs. Fisher's exact tests and unpaired t tests were used to compare residual urine presence and prostatic urethra measurements between patients with and without midline radiotracer activity. The influence of anatomical factors including prostate volume and urethral curvature on urinary stagnation was also explored. RESULTS: Midline activity on PSMA PET imaging was seen in 14 patients included in the case group, whereas the remaining 71 with no midline activity constituted the control group. A total of 71.4% (10/14) and 29.6% (21/71) of patients in the case and control groups had urethral hyperintensity on T2W MRI, respectively (P < 0.01). Patients in the case group had significantly larger mean urethral dimensions, larger prostate volumes, and higher incidence of severe urethral curvature compared with the controls. CONCLUSIONS: Stagnated urine within the prostatic urethra is a potential confounding factor on PSMA PET scans. Integrating PET imaging with T2W MRI can mitigate false-positive calls, especially as PSMA PET/CT continues to gain traction in diagnosing localized prostate cancer.

13.
Acad Radiol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670874

RESUMEN

RATIONALE AND OBJECTIVES: Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prostate T2W MRI, ADC map, and High B DWI. MATERIAL AND METHODS: An expert genitourinary radiologist conducted prospective clinical assessments of MRI scans for 634 patients and assigned risk for EPE using a grading technique. The training set and held-out independent test set consisted of 507 patients and 127 patients, respectively. Existing deep-learning AI models for prostate organ and lesion segmentation were leveraged to extract area and distance features for random forest classification models. Model performance was evaluated using balanced accuracy, ROC AUCs for each EPE grade, as well as sensitivity, specificity, and accuracy compared to EPE on histopathology. RESULTS: A balanced accuracy score of .390 ± 0.078 was achieved using a lesion detection probability threshold of 0.45 and distance features. Using the test set, ROC AUCs for AI-assigned EPE grades 0-3 were 0.70, 0.65, 0.68, and 0.55 respectively. When using EPE≥ 1 as the threshold for positive EPE, the model achieved a sensitivity of 0.67, specificity of 0.73, and accuracy of 0.72 compared to radiologist sensitivity of 0.81, specificity of 0.62, and accuracy of 0.66 using histopathology as the ground truth. CONCLUSION: Our AI workflow for assigning imaging-based EPE grades achieves an accuracy for predicting histologic EPE approaching that of physicians. This automated workflow has the potential to enhance physician decision-making for assessing the risk of EPE in patients undergoing treatment for prostate cancer due to its consistency and automation.

14.
Abdom Radiol (NY) ; 49(5): 1545-1556, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38512516

RESUMEN

OBJECTIVE: Automated methods for prostate segmentation on MRI are typically developed under ideal scanning and anatomical conditions. This study evaluates three different prostate segmentation AI algorithms in a challenging population of patients with prior treatments, variable anatomic characteristics, complex clinical history, or atypical MRI acquisition parameters. MATERIALS AND METHODS: A single institution retrospective database was queried for the following conditions at prostate MRI: prior prostate-specific oncologic treatment, transurethral resection of the prostate (TURP), abdominal perineal resection (APR), hip prosthesis (HP), diversity of prostate volumes (large ≥ 150 cc, small ≤ 25 cc), whole gland tumor burden, magnet strength, noted poor quality, and various scanners (outside/vendors). Final inclusion criteria required availability of axial T2-weighted (T2W) sequence and corresponding prostate organ segmentation from an expert radiologist. Three previously developed algorithms were evaluated: (1) deep learning (DL)-based model, (2) commercially available shape-based model, and (3) federated DL-based model. Dice Similarity Coefficient (DSC) was calculated compared to expert. DSC by model and scan factors were evaluated with Wilcox signed-rank test and linear mixed effects (LMER) model. RESULTS: 683 scans (651 patients) met inclusion criteria (mean prostate volume 60.1 cc [9.05-329 cc]). Overall DSC scores for models 1, 2, and 3 were 0.916 (0.707-0.971), 0.873 (0-0.997), and 0.894 (0.025-0.961), respectively, with DL-based models demonstrating significantly higher performance (p < 0.01). In sub-group analysis by factors, Model 1 outperformed Model 2 (all p < 0.05) and Model 3 (all p < 0.001). Performance of all models was negatively impacted by prostate volume and poor signal quality (p < 0.01). Shape-based factors influenced DL models (p < 0.001) while signal factors influenced all (p < 0.001). CONCLUSION: Factors affecting anatomical and signal conditions of the prostate gland can adversely impact both DL and non-deep learning-based segmentation models.


Asunto(s)
Algoritmos , Inteligencia Artificial , Imagen por Resonancia Magnética , Neoplasias de la Próstata , Humanos , Masculino , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Interpretación de Imagen Asistida por Computador/métodos , Persona de Mediana Edad , Anciano , Próstata/diagnóstico por imagen , Aprendizaje Profundo
15.
Eur Urol Open Sci ; 62: 74-80, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468864

RESUMEN

Background and objective: Focal therapy (FT) is increasingly recognized as a promising approach for managing localized prostate cancer (PCa), notably reducing treatment-related morbidities. However, post-treatment anatomical changes present significant challenges for surveillance using current imaging techniques. This study aimed to evaluate the inter-reader agreement and efficacy of the Prostate Imaging after Focal Ablation (PI-FAB) scoring system in detecting clinically significant prostate cancer (csPCa) on post-FT multiparametric magnetic resonance imaging (mpMRI). Methods: A retrospective cohort study was conducted involving patients who underwent primary FT for localized csPCa between 2013 and 2023, followed by post-FT mpMRI and a prostate biopsy. Two expert genitourinary radiologists retrospectively evaluated post-FT mpMRI using PI-FAB. The key measures included inter-reader agreement of PI-FAB scores, assessed by quadratic weighted Cohen's kappa (κ), and the system's efficacy in predicting in-field recurrence of csPCa, with a PI-FAB score cutoff of 3. Additional diagnostic metrics including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and overall accuracy were also evaluated. Key findings and limitations: Scans from 38 patients were analyzed, revealing a moderate level of agreement in PI-FAB scoring (κ = 0.56). Both radiologists achieved sensitivity of 93% in detecting csPCa, although specificity, PPVs, NPVs, and accuracy varied. Conclusions and clinical implications: The PI-FAB scoring system exhibited high sensitivity with moderate inter-reader agreement in detecting in-field recurrence of csPCa. Despite promising results, its low specificity and PPV necessitate further refinement. These findings underscore the need for larger studies to validate the clinical utility of PI-FAB, potentially aiding in standardizing post-treatment surveillance. Patient summary: Focal therapy has emerged as a promising approach for managing localized prostate cancer, but limitations in current imaging techniques present significant challenges for post-treatment surveillance. The Prostate Imaging after Focal Ablation (PI-FAB) scoring system showed high sensitivity for detecting in-field recurrence of clinically significant prostate cancer. However, its low specificity and positive predictive value necessitate further refinement. Larger, more comprehensive studies are needed to fully validate its clinical utility.

16.
Case Reports Immunol ; 2024: 9382107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482465

RESUMEN

The Castleman triad has been described in a select few patients presenting with a retroperitoneal mass, mucocutaneous pemphigus vulgaris, and bronchiolitis obliterans. Here, we describe the Castleman triad in a 19-year-old male with unicentric hyaline vascular type Castleman disease (HV-CD). This patient presented with an array of positive antibodies, including anti-cyclic citrullinated peptide, anti-double-stranded DNA, and Sjogren's IgG. Interestingly, the patient's rheumatologic symptoms resolved after tumor resection, while his antibody profile remained relatively unchanged. HV-CD, with a triad presentation, was thought to be from a paraneoplastic syndrome secondary to an underlying lymphoproliferative disorder. The findings presented here identify multiple autoantibodies potentially contributing to this patient's presentation with HV-CD.

17.
Res Sq ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496436

RESUMEN

Liver cancer ranks as the fifth leading cause of cancer-related death globally. Direct intratumoral injections of anti-cancer therapeutics may improve therapeutic efficacy and mitigate adverse effects compared to intravenous injections. Some challenges of intratumoral injections are that the liquid drug formulation may not remain localized and have unpredictable volumetric distribution. Thus, drug delivery varies widely, highly-dependent upon technique. An x-ray imageable poloxamer 407 (POL)-based drug delivery gel was developed and characterized, enabling real-time feedback. Utilizing three needle devices, POL or a control iodinated contrast solution were injected into an ex vivo bovine liver. The 3D distribution was assessed with cone beam computed tomography (CBCT). The 3D distribution of POL gels demonstrated localized spherical morphologies regardless of the injection rate. In addition, the gel 3D conformal distribution could be intentionally altered, depending on the injection technique. When doxorubicin (DOX) was loaded into the POL and injected, DOX distribution on optical imaging matched iodine distribution on CBCT suggesting spatial alignment of DOX and iodine localization in tissue. The controllability and localized deposition of this formulation may ultimately reduce the dependence on operator technique, reduce systemic side effects, and facilitate reproducibility across treatments, through more predictable standardized delivery.

18.
Comput Biol Med ; 173: 108349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547660

RESUMEN

BACKGROUND: Ventilator dyssynchrony (VD) can worsen lung injury and is challenging to detect and quantify due to the complex variability in the dyssynchronous breaths. While machine learning (ML) approaches are useful for automating VD detection from the ventilator waveform data, scalable severity quantification and its association with pathogenesis and ventilator mechanics remain challenging. OBJECTIVE: We develop a systematic framework to quantify pathophysiological features observed in ventilator waveform signals such that they can be used to create feature-based severity stratification of VD breaths. METHODS: A mathematical model was developed to represent the pressure and volume waveforms of individual breaths in a feature-based parametric form. Model estimates of respiratory effort strength were used to assess the severity of flow-limited (FL)-VD breaths compared to normal breaths. A total of 93,007 breath waveforms from 13 patients were analyzed. RESULTS: A novel model-defined continuous severity marker was developed and used to estimate breath phenotypes of FL-VD breaths. The phenotypes had a predictive accuracy of over 97% with respect to the previously developed ML-VD identification algorithm. To understand the incidence of FL-VD breaths and their association with the patient state, these phenotypes were further successfully correlated with ventilator-measured parameters and electronic health records. CONCLUSION: This work provides a computational pipeline to identify and quantify the severity of FL-VD breaths and paves the way for a large-scale study of VD causes and effects. This approach has direct application to clinical practice and in meaningful knowledge extraction from the ventilator waveform data.


Asunto(s)
Lesión Pulmonar , Humanos , Ventiladores Mecánicos , Pulmón/fisiología , Respiración Artificial/métodos
20.
Am J Respir Cell Mol Biol ; 70(4): 283-294, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38207120

RESUMEN

Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, is characterized by impaired lung development with sustained functional abnormalities due to alterations of airways and the distal lung. Although clinical studies have shown striking associations between antenatal stress and BPD, little is known about the underlying pathogenetic mechanisms. Whether dysanapsis, the concept of discordant growth of the airways and parenchyma, contributes to late respiratory disease as a result of antenatal stress is unknown. We hypothesized that antenatal endotoxin (ETX) impairs juvenile lung function as a result of altered central airway and distal lung structure, suggesting the presence of dysanapsis in this preclinical BPD model. Fetal rats were exposed to intraamniotic ETX (10 µg) or saline solution (control) 2 days before term. We performed extensive structural and functional evaluation of the proximal airways and distal lung in 2-week-old rats. Distal lung structure was quantified by stereology. Conducting airway diameters were measured using micro-computed tomography. Lung function was assessed during invasive ventilation to quantify baseline mechanics, response to methacholine challenge, and spirometry. ETX-exposed pups exhibited distal lung simplification, decreased alveolar surface area, and decreased parenchyma-airway attachments. ETX-exposed pups exhibited decreased tracheal and second- and third-generation airway diameters. ETX increased respiratory system resistance and decreased lung compliance at baseline. Only Newtonian resistance, specific to large airways, exhibited increased methacholine reactivity in ETX-exposed pups compared with controls. ETX-exposed pups had a decreased ratio of FEV in 0.1 second to FVC and a normal FEV in 0.1 second, paralleling the clinical definition of dysanapsis. Antenatal ETX causes abnormalities of the central airways and distal lung growth, suggesting that dysanapsis contributes to abnormal lung function in juvenile rats.


Asunto(s)
Displasia Broncopulmonar , Ratas , Animales , Femenino , Embarazo , Displasia Broncopulmonar/patología , Endotoxinas , Cloruro de Metacolina/farmacología , Microtomografía por Rayos X , Ratas Sprague-Dawley , Animales Recién Nacidos , Pulmón/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...