Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587456

RESUMEN

Hantaviridae is a family for negative-sense RNA viruses with genomes of about 10.5-14.6 kb. These viruses are maintained in and/or transmitted by fish, reptiles, and mammals. Several orthohantaviruses can infect humans, causing mild, severe, and sometimes-fatal diseases. Hantavirids produce enveloped virions containing three single-stranded RNA segments with open reading frames that encode a nucleoprotein (N), a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hantaviridae, which is available at ictv.global/report/hantaviridae.


Asunto(s)
Virus ARN , Animales , Humanos , Virus ARN de Sentido Negativo , Virión/genética , Nucleoproteínas , Sistemas de Lectura Abierta , Mamíferos
2.
Emerg Infect Dis ; 30(4): 817-821, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526320

RESUMEN

Orthohantaviruses cause hantavirus cardiopulmonary syndrome; most cases occur in the southwest region of the United States. We discuss a clinical case of orthohantavirus infection in a 65-year-old woman in Michigan and the phylogeographic link of partial viral fragments from the patient and rodents captured near the presumed site of infection.


Asunto(s)
Infecciones por Hantavirus , Orthohantavirus , Femenino , Humanos , Anciano , Michigan/epidemiología , Filogeografía , Síndrome
3.
PLoS Negl Trop Dis ; 18(1): e0011672, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38215158

RESUMEN

BACKGROUND: Hantaviruses are negative-stranded RNA viruses that can sometimes cause severe disease in humans; however, they are maintained in mammalian host populations without causing harm. In Panama, sigmodontine rodents serve as hosts to transmissible hantaviruses. Due to natural and anthropogenic forces, these rodent populations are having increased contact with humans. METHODS: We extracted RNA and performed Illumina deep metatranscriptomic sequencing on Orthohantavirus seropositive museum tissues from rodents. We acquired sequence reads mapping to Choclo virus (CHOV, Orthohantavirus chocloense) from heart and kidney tissue of a two-decade old frozen museum sample from a Costa Rican pygmy rice rat (Oligoryzomys costaricensis) collected in Panama. Reads mapped to the CHOV reference were assembled and then validated by visualization of the mapped reads against the assembly. RESULTS: We recovered a 91% complete consensus sequence from a reference-guided assembly to CHOV with an average of 16X coverage. The S and M segments used in our phylogenetic analyses were nearly complete (98% and 99%, respectively). There were 1,199 ambiguous base calls of which 93% were present in the L segment. Our assembled genome varied 1.1% from the CHOV reference sequence resulting in eight nonsynonymous mutations. Further analysis of all publicly available partial S segment sequences support a clear relationship between CHOV clinical cases and O. costaricensis acquired strains. CONCLUSIONS: Viruses occurring at extremely low abundances can be recovered from deep metatranscriptomics of archival tissues housed in research natural history museum biorepositories. Our efforts resulted in the second CHOV genome publicly available. This genomic data is important for future surveillance and diagnostic tools as well as understanding the evolution and pathogenicity of CHOV.


Asunto(s)
Orthohantavirus , Sigmodontinae , Animales , Ratas , Humanos , Filogenia , Roedores , Bancos de Muestras Biológicas
4.
PLoS One ; 19(1): e0296718, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38236803

RESUMEN

Orthohantaviruses are diverse zoonotic RNA viruses. Small mammals, such as mice and rats are common chronic, asymptomatic hosts that transmit the virus through their feces and urine. In North America, hantavirus infection primarily causes hantavirus cardiopulmonary syndrome (HCPS), which has a mortality rate of nearly 36%. In the United States of America, New Mexico (NM) is leading the nation in the number of HCPS-reported cases (N = 129). However, no reported cases of HCPS have occurred within eastern NM. In this study, we assessed the prevalence of Sin Nombre virus (SNV) in rodent assemblages across eastern NM, using RT-qPCR. We screened for potential rodent hosts in the region, as well as identified areas that may pose significant infection risk to humans. We captured and collected blood and lung tissues from 738 rodents belonging to 23 species. 167 individuals from 16 different species were positive for SNV RNA by RT-qPCR, including 6 species unreported in the literature: Onychomys leucogaster (Northern grasshopper mouse), Dipodomys merriami (Merriam's kangaroo rat), Dipodomys ordii (Ord's kangaroo rat), Dipodomys spectabilis (Banner-tailed kangaroo rat), Perognathus flavus (Silky pocket mouse), and Chaetodipus hispidus (Hispid pocket mouse). The infection rates did not differ between sexes or rodent families (i.e., Cricetidae vs. Heteromyidae). Generalized linear model showed that disturbed habitat types positively influenced the prevalence of SNV at sites of survey. Overall, the results of this study indicate that many rodent species in east New Mexico have the potential to maintain SNV in the environment, but further research is needed to assess species specific infectivity mechanisms and potential risk to humans.


Asunto(s)
Infecciones por Hantavirus , Síndrome Pulmonar por Hantavirus , Orthohantavirus , Virus Sin Nombre , Humanos , Animales , Ratones , Roedores , Dipodomys , Virus Sin Nombre/genética , New Mexico/epidemiología , Prevalencia , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/veterinaria , Orthohantavirus/genética , Arvicolinae , Síndrome Pulmonar por Hantavirus/epidemiología , Síndrome Pulmonar por Hantavirus/veterinaria
5.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37622664

RESUMEN

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Virus ARN de Sentido Negativo , Virus ARN , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética
6.
Sci Transl Med ; 15(700): eadg1855, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37315110

RESUMEN

Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.


Asunto(s)
Anticuerpos Antivirales , Orthohantavirus , Humanos , Benchmarking , Anticuerpos ampliamente neutralizantes , Secuencia Conservada
7.
Elife ; 122023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37140960

RESUMEN

The COVID-19 global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has infected hundreds of millions of individuals. Following COVID-19 infection, a subset can develop a wide range of chronic symptoms affecting diverse organ systems referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. A National Institutes of Health-sponsored initiative, RECOVER: Researching COVID to Enhance Recovery, has sought to understand the basis of long COVID in a large cohort. Given the range of symptoms that occur in long COVID, the mechanisms that may underlie these diverse symptoms may also be diverse. In this review, we focus on the emerging literature supporting the role(s) that viral persistence or reactivation of viruses may play in PASC. Persistence of SARS-CoV-2 RNA or antigens is reported in some organs, yet the mechanism by which they do so and how they may be associated with pathogenic immune responses is unclear. Understanding the mechanisms of persistence of RNA, antigen or other reactivated viruses and how they may relate to specific inflammatory responses that drive symptoms of PASC may provide a rationale for treatment.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Estados Unidos , Humanos , ARN Viral , SARS-CoV-2 , Progresión de la Enfermedad
8.
Viruses ; 15(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36992369

RESUMEN

The official classification of newly discovered or long-known unassigned viruses by the International Committee on Taxonomy of Viruses (ICTV) requires the deposition of coding-complete or -near-complete virus genome sequences in GenBank to fulfill a requirement of the taxonomic proposal (TaxoProp) process. However, this requirement is fairly new; thus, genomic sequence information is fragmented or absent for many already-classified viruses. As a result, taxon-wide modern phylogenetic analyses are often challenging, if not impossible. This problem is particularly eminent among viruses with segmented genomes, such as bunyavirals, which were frequently classified solely based on single-segment sequence information. To solve this issue for one bunyaviral family, Hantaviridae, we call on the community to provide additional sequence information for incompletely sequenced classified viruses by mid-June 2023. Such sequence information may be sufficient to prevent their possible declassification during the ongoing efforts to establish a coherent, consistent, and evolution-based hantavirid taxonomy.


Asunto(s)
Virus ARN , Virus , Filogenia , Virus/genética , Genómica , Bases de Datos de Ácidos Nucleicos
9.
Viruses ; 15(2)2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36851776

RESUMEN

Alphaviruses are important human and animal pathogens that can cause a range of debilitating symptoms and are found worldwide. These include arthralgic diseases caused by Old-World viruses and encephalitis induced by infection with New-World alphaviruses. Non-coding RNAs do not encode for proteins, but can modulate cellular response pathways in a myriad of ways. There are several classes of non-coding RNAs, some more well-studied than others. Much research has focused on the mRNA response to infection against alphaviruses, but analysis of non-coding RNA responses has been more limited until recently. This review covers what is known regarding host cell non-coding RNA responses in alphavirus infections and highlights gaps in the knowledge that future research should address.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Encefalitis , Animales , Humanos , Alphavirus/genética , Artralgia , ARN no Traducido/genética
10.
Virology ; 579: 101-110, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623351

RESUMEN

Zika virus (ZIKV), a mosquito-borne pathogen, is associated with neurological complications in adults and congenital abnormalities in newborns. There are no vaccines or treatments for ZIKV infection. Understanding the specificity of natural antibody responses to ZIKV could help inform vaccine efforts. Here, we used a technology called Deep Sequence-Coupled Biopanning to map the targets of the human antibody responses to ZIKV infection. A bacteriophage virus-like particle (VLP) library displaying overlapping linear peptides derived from the ZIKV polyprotein was generated. The library was panned using IgG from 23 ZIKV-infected patients from Panama and deep sequencing identified common targets of anti-ZIKV antibodies within the ZIKV envelope glycoprotein. These included epitopes within the fusion loop within domain II and four epitopes within domain III. Additionally, we showed that VLPs displaying selected epitopes elicited antibodies that bound to native ZIKV envelope protein but failed to prevent infection in a mouse challenge model.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Epítopos , Proteínas del Envoltorio Viral/química , Infección por el Virus Zika/inmunología
11.
Antiviral Res ; 209: 105476, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436722

RESUMEN

The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.


Asunto(s)
Infecciones por Alphavirus , Virus Chikungunya , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Replicación Viral , Virus Chikungunya/genética , Región del Caribe
12.
Antiviral Res ; 210: 105496, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36567020

RESUMEN

Development of lethal models of Ebola virus disease has been achieved by the serial passage of virus isolates from human cases in mice and guinea pigs. Use of mice infected with non-adapted virus has been limited due to the absence of overt clinical disease. In recent years, newly recognized sequelae identified in human cases has highlighted the importance of continued investigations of non-lethal infection both in humans and animal models. Here, we revisit the use of rodent-adapted and non-adapted Ebola virus (EBOV) in mice to investigate infection tolerance and future utility of these models in pathogenesis and therapeutic intervention studies. We found that like non-adapted wild-type EBOV, guinea pig-adapted EBOV resulted in widespread tissue infection, variably associated with tissue pathology, and alterations in clinical and immunological analytes in the absence of overt disease. Notably, infection with either non-lethal variant did not greatly differ from lethal mouse-adapted EBOV until near the time end-point criteria are reached in these mice. These data support future investigations of pathogenesis, convalescence, and sequelae in mouse models of virus tolerance.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Cobayas , Humanos , Animales , Ratones , Ebolavirus/genética , Modelos Animales de Enfermedad
13.
Antiviral Res ; 210: 105493, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36567023

RESUMEN

Ebola virus (EBOV) is a member of the filoviridae family, which are comprised of negative sense, enveloped RNA hemorrhagic fever viruses that can cause severe disease and high lethality rates. These viruses require BSL-4 containment laboratories for study. Early studies of EBOV pathogenesis relied heavily on the use of nonhuman primates, which are expensive and cumbersome to handle in large numbers. Guinea pig models were also developed, but even to this day limited reagents are available in this model. In 1998, Mike Bray and colleagues developed a mouse-adapted EBOV (maEBOV) that caused lethality in adult immunocompetent mice. This model had significant advantages, including being inexpensive, allowing for higher animal numbers for statistical analysis, availability of reagents for studying pathogenesis, and availability of a vast array of genetically modified strains. The model has been used to test vaccines, therapeutic drugs, EBOV mutants, and pathogenesis, and its importance is demonstrated by the hundreds of citations referencing the original publication. This review will cover the history of the maEBOV model and its use in filovirus research.


Asunto(s)
Ebolavirus , Infecciones por Filoviridae , Fiebre Hemorrágica Ebola , Animales , Ratones , Cobayas , Ebolavirus/genética , Modelos Animales de Enfermedad
14.
Arch Virol ; 167(12): 2857-2906, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36437428

RESUMEN

In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Mononegavirales , Virus , Humanos , Mononegavirales/genética , Filogenia
15.
Expert Rev Anti Infect Ther ; 20(12): 1551-1566, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36305549

RESUMEN

INTRODUCTION: Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV) are mosquito-borne New World alphaviruses that cause encephalitis in equids and humans. These viruses can cause severe disease and death, as well as long-term severe neurological symptoms in survivors. Despite the pathogenesis and weaponization of these viruses, there are no approved therapeutics for treating infection. AREAS COVERED: In this review, we describe the molecular pathogenesis of these viruses, discuss host-pathogen interactions needed for viral replication, and highlight new avenues for drug development with a focus on host-targeted approaches. EXPERT OPINION: Current approaches have yielded some promising therapeutics, but additional emphasis should be placed on advanced development of existing small molecules and pursuit of pan-encephalitic alphavirus drugs. More research should be conducted on EEEV and WEEV, given their high lethality rates.


Asunto(s)
Alphavirus , Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina , Virosis , Animales , Humanos , Caballos , Virus de la Encefalitis Equina Venezolana/fisiología , Virus de la Encefalitis Equina del Oeste/fisiología , Encefalomielitis Equina/tratamiento farmacológico
16.
Exp Biol Med (Maywood) ; 247(14): 1253-1263, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35491994

RESUMEN

Epidemiological data across the United States show health disparities in COVID-19 infection, hospitalization, and mortality by race/ethnicity. While the association between elevated SARS-CoV-2 viral loads (VLs) (i.e. upper respiratory tract (URT) and peripheral blood (PB)) and increased COVID-19 severity has been reported, data remain largely unavailable for some disproportionately impacted racial/ethnic groups, particularly for American Indian or Alaska Native (AI/AN) populations. As such, we determined the relationship between SARS-CoV-2 VL dynamics and disease severity in a diverse cohort of hospitalized patients. Results presented here are for study participants (n = 94, ages 21-88 years) enrolled in a prospective observational study between May and October 2020 who had SARS-CoV-2 viral clades 20A, C, and G. Based on self-reported race/ethnicity and sample size distribution, the cohort was stratified into two groups: (AI/AN, n = 43) and all other races/ethnicities combined (non-AI/AN, n = 51). SARS-CoV-2 VLs were quantified in the URT and PB on days 0-3, 6, 9, and 14. The strongest predictor of severe COVID-19 in the study population was the mean VL in PB (OR = 3.34; P = 2.00 × 10-4). The AI/AN group had the following: (1) comparable co-morbidities and admission laboratory values, yet more severe COVID-19 (OR = 4.81; P = 0.014); (2) a 2.1 longer duration of hospital stay (P = 0.023); and (3) higher initial and cumulative PB VLs during severe disease (P = 0.025). Moreover, self-reported race/ethnicity as AI/AN was the strongest predictor of elevated PB VLs (ß = 1.08; P = 6.00 × 10-4) and detection of SARS-CoV-2 in PB (hazard ratio = 3.58; P = 0.004). The findings presented here suggest a strong relationship between PB VL (magnitude and frequency) and severe COVID-19, particularly for the AI/AN group.


Asunto(s)
COVID-19 , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , Etnicidad , Humanos , Persona de Mediana Edad , Grupos Raciales , SARS-CoV-2 , Estados Unidos/epidemiología , Adulto Joven
17.
Viruses ; 14(4)2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35458412

RESUMEN

Orthohantaviruses are negative-stranded RNA viruses with trisegmented genomes that can cause severe disease in humans and are carried by several host reservoirs throughout the world. Old World orthohantaviruses are primarily located throughout Europe and Asia, causing hemorrhagic fever with renal syndrome, and New World orthohantaviruses are found in North, Central, and South America, causing hantavirus cardiopulmonary syndrome (HCPS). In the United States, Sin Nombre orthohantavirus (SNV) is the primary cause of HCPS with a fatality rate of ~36%. The primary SNV host reservoir is thought to be the North American deer mouse, Peromyscus maniculatus. However, it has been shown that other species of Peromyscus can carry different orthohantaviruses. Few studies have systemically surveyed which orthohantaviruses may exist in wild-caught rodents or monitored spillover events into additional rodent reservoirs. A method for the rapid detection of orthohantaviruses is needed to screen large collections of rodent samples. Here, we report a pan-orthohantavirus, two-step reverse-transcription quantitative real-time PCR (RT-qPCR) tool designed to detect both Old and New World pathogenic orthohantavirus sequences of the S segment of the genome and validated them using plasmids and authentic viruses. We then performed a screening of wild-caught rodents and identified orthohantaviruses in lung tissue, and we confirmed the findings by Sanger sequencing. Furthermore, we identified new rodent reservoirs that have not been previously reported as orthohantavirus carriers. This novel tool can be used for the efficient and rapid detection of various orthohantaviruses, while uncovering potential new orthohantaviruses and host reservoirs that may otherwise go undetected.


Asunto(s)
Infecciones por Hantavirus , Síndrome Pulmonar por Hantavirus , Orthohantavirus , Enfermedades de los Roedores , Virus Sin Nombre , Animales , Reservorios de Enfermedades , Orthohantavirus/genética , Infecciones por Hantavirus/diagnóstico , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/veterinaria , Peromyscus , Enfermedades de los Roedores/epidemiología , Roedores
18.
Sci Transl Med ; 14(636): eabl5399, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35294259

RESUMEN

The rodent-borne hantavirus Puumala virus (PUUV) and related agents cause hemorrhagic fever with renal syndrome (HFRS) in humans. Other hantaviruses, including Andes virus (ANDV) and Sin Nombre virus, cause a distinct zoonotic disease, hantavirus cardiopulmonary syndrome (HCPS). Although these infections are severe and have substantial case fatality rates, no FDA-approved hantavirus countermeasures are available. Recent work suggests that monoclonal antibodies may have therapeutic utility. We describe here the isolation of human neutralizing antibodies (nAbs) against tetrameric Gn/Gc glycoprotein spikes from PUUV-experienced donors. We define a dominant class of nAbs recognizing the "capping loop" of Gn that masks the hydrophobic fusion loops in Gc. A subset of nAbs in this class, including ADI-42898, bound Gn/Gc complexes but not Gn alone, strongly suggesting that they recognize a quaternary epitope encompassing both Gn and Gc. ADI-42898 blocked the cell entry of seven HCPS- and HFRS-associated hantaviruses, and single doses of this nAb could protect Syrian hamsters and bank voles challenged with the highly virulent HCPS-causing ANDV and HFRS-causing PUUV, respectively. ADI-42898 is a promising candidate for clinical development as a countermeasure for both HCPS and HFRS, and its mode of Gn/Gc recognition informs the development of broadly protective hantavirus vaccines.


Asunto(s)
Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Virus Puumala , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Cricetinae , Epítopos , Glicoproteínas , Fiebre Hemorrágica con Síndrome Renal/prevención & control , Humanos
19.
Viruses ; 14(2)2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35215864

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an Alphavirus in the Togaviridae family of positive-strand RNA viruses. The viral genome of positive-strand RNA viruses is infectious, as it produces infectious virus upon introduction into a cell. VEEV is a select agent and samples containing viral RNA are subject to additional regulations due to their infectious nature. Therefore, RNA isolated from cells infected with BSL-3 select agent strains of VEEV or other positive-strand viruses must be inactivated before removal from high-containment laboratories. In this study, we tested the inactivation of the viral genome after RNA fragmentation or cDNA synthesis, using the Trinidad Donkey and TC-83 strains of VEEV. We successfully inactivated VEEV genomic RNA utilizing these two protocols. Our cDNA synthesis method also inactivated the genomic RNA of eastern and western equine encephalitis viruses (EEEV and WEEV). We also tested whether the purified VEEV genomic RNA can produce infectious virions in the absence of transfection. Our result showed the inability of the viral genome to cause infection without being transfected into the cells. Overall, this work introduces RNA fragmentation and cDNA synthesis as reliable methods for the inactivation of samples containing the genomes of positive-strand RNA viruses.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , Genoma Viral , ARN Viral , Inactivación de Virus , Animales , Células Cultivadas , Chlorocebus aethiops , Efecto Citopatogénico Viral , ADN Complementario/biosíntesis , Virus de la Encefalitis Equina del Este/genética , Virus de la Encefalitis Equina del Este/fisiología , Virus de la Encefalitis Equina Venezolana/fisiología , Virus de la Encefalitis Equina del Oeste/genética , Virus de la Encefalitis Equina del Oeste/fisiología , ARN Viral/química , ARN Viral/fisiología , Ribonucleasas/metabolismo , Células Vero
20.
J Crohns Colitis ; 16(2): 259-274, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-34374750

RESUMEN

Intestinal myeloid cells play a critical role in balancing intestinal homeostasis and inflammation. Here, we report that expression of the autophagy-related 5 [Atg5] protein in myeloid cells prevents dysbiosis and excessive intestinal inflammation by limiting IL-12 production. Mice with a selective genetic deletion of Atg5 in myeloid cells [Atg5ΔMye] showed signs of dysbiosis preceding colitis, and exhibited severe intestinal inflammation upon colitis induction that was characterised by increased IFNγ production. The exacerbated colitis was linked to excess IL-12 secretion from Atg5-deficient myeloid cells and gut dysbiosis. Restoration of the intestinal microbiota or genetic deletion of IL-12 in Atg5ΔMye mice attenuated the intestinal inflammation in Atg5ΔMye mice. Additionally, Atg5 functions to limit IL-12 secretion through modulation of late endosome [LE] acidity. Last, the autophagy cargo receptor NBR1, which accumulates in Atg5-deficient cells, played a role by delivering IL-12 to LE. In summary, Atg5 expression in intestinal myeloid cells acts as an anti-inflammatory brake to regulate IL-12, thus preventing dysbiosis and uncontrolled IFNγ-driven intestinal inflammation.


Asunto(s)
Colitis , Disbiosis , Animales , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Colitis/inducido químicamente , Colitis/prevención & control , Inflamación/metabolismo , Interleucina-12 , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...