Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(13): e2300648120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943883

RESUMEN

Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) have recently been established to define a new disease entity, MOG-antibody-associated disease (MOGAD), which is clinically overlapping with multiple sclerosis. MOG-specific antibodies (Abs) from patients are pathogenic, but the precise effector mechanisms are currently still unknown and no therapy is approved for MOGAD. Here, we determined the contributions of complement and Fc-receptor (FcR)-mediated effects in the pathogenicity of MOG-Abs. Starting from a recombinant anti-MOG (mAb) with human IgG1 Fc, we established MOG-specific mutant mAbs with differential FcR and C1q binding. We then applied selected mutants of this MOG-mAb in two animal models of experimental autoimmune encephalomyelitis. First, we found MOG-mAb-induced demyelination was mediated by both complement and FcRs about equally. Second, we found that MOG-Abs enhanced activation of cognate MOG-specific T cells in the central nervous system (CNS), which was dependent on FcR-, but not C1q-binding. The identification of complement-dependent and -independent pathomechanisms of MOG-Abs has implications for therapeutic strategies in MOGAD.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Humanos , Glicoproteína Mielina-Oligodendrócito , Autoanticuerpos , Receptores Fc , Proteínas del Sistema Complemento , Anticuerpos Monoclonales
2.
Neuropathol Appl Neurobiol ; 49(2): e12893, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36811295

RESUMEN

AIMS: Many patients with neuromyelitis optica spectrum disorders (NMOSD) suffer from cognitive impairment affecting memory, processing speed and attention and suffer from depressive symptoms. Because some of these manifestations could trace back to the hippocampus, several magnetic resonance imaging (MRI) studies have been performed in the past, with a number of groups describing volume loss of the hippocampus in NMOSD patients, whereas others did not observe such changes. Here, we addressed these discrepancies. METHODS: We performed pathological and MRI studies on the hippocampi of NMOSD patients, combined with detailed immunohistochemical analysis of hippocampi from experimental models of NMOSD. RESULTS: We identified different pathological scenarios for hippocampal damage in NMOSD and its experimental models. In the first case, the hippocampus was compromised by the initiation of astrocyte injury in this brain region and subsequent local effects of microglial activation and neuronal damage. In the second case, loss of hippocampal volume was seen by MRI in patients with large tissue-destructive lesions in the optic nerves or the spinal cord, and the pathological work-up of tissue derived from a patient with such lesions revealed subsequent retrograde neuronal degeneration affecting different axonal tracts and neuronal networks. It remains to be seen whether remote lesions and associated retrograde neuronal degeneration on their own are sufficient to cause extensive volume loss of the hippocampus, or whether they act in concert with small astrocyte-destructive, microglia-activating lesions in the hippocampus that escape detection by MRI, either due to their small size or due to the chosen time window for examination. CONCLUSIONS: Different pathological scenarios can culminate in hippocampal volume loss in NMOSD patients.


Asunto(s)
Neuromielitis Óptica , Humanos , Neuromielitis Óptica/patología , Médula Espinal/patología , Encéfalo/patología , Imagen por Resonancia Magnética , Hipocampo/patología , Autoanticuerpos , Acuaporina 4
5.
Acta Neuropathol ; 141(1): 67-83, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33242149

RESUMEN

Aim of our study was to identify the target auto-antigen in the central nervous system recognized by the immune system of a unique patient, who died more than 60 years ago from a disease with pathological changes closely resembling multiple sclerosis (MS), following a misguided immunization with lyophilized calf brain tissue. Total mRNA was isolated from formaldehyde fixed and paraffin embedded archival brain tissue containing chronic active inflammatory demyelinating lesions with inflammatory infiltrates rich in B-lymphocytes and plasma cells. Analysis of the transcriptome by next generation sequencing and reconstruction of the dominant antibody by bioinformatic tools revealed the presence of one strongly expanded B-cell clone, producing an autoantibody against a conformational epitope of myelin oligodendrocytes glycoprotein (MOG), similar to that recognized by the well characterized monoclonal anti-MOG antibody 8-18C5. The reconstructed antibody induced demyelination after systemic or intrathecal injection into animals with T-cell mediated encephalomyelitis. Our study suggests that immunization with bovine brain tissue in humans may-in a small subset of patients-induce a disease with an intermediate clinical and pathological presentation between MS and MOG-antibody associated inflammatory demyelinating disease (MOGAD).


Asunto(s)
Alergia e Inmunología , Arqueología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Encefalomielitis/inmunología , Encefalomielitis/patología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Neurología , Adulto , Animales , Enfermedades Autoinmunes/genética , Linfocitos B/inmunología , Biología Computacional , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/inmunología , Encefalomielitis/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Esclerosis Múltiple/genética , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/inmunología , Adhesión en Parafina , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Fijación del Tejido , Transcriptoma
6.
Brain Pathol ; 31(2): 333-345, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33220123

RESUMEN

Iron accumulation in the CNS is associated with many neurological diseases via amplification of inflammation and neurodegeneration. However, experimental studies on iron overload are challenging, since rodents hardly accumulate brain iron in contrast to humans. Here, we studied LEWzizi rats, which present with elevated CNS iron loads, aiming to characterise choroid plexus, ependymal, CSF and CNS parenchymal iron loads in conjunction with altered blood iron parameters and, thus, signifying non-classical entry sites for iron into the CNS. Non-haem iron in formalin-fixed paraffin-embedded tissue was detected via DAB-enhanced Turnbull Blue stainings. CSF iron levels were determined via atomic absorption spectroscopy. Ferroportin and aquaporin-1 expression was visualised using immunohistochemistry. The analysis of red blood cell indices and serum/plasma parameters was based on automated measurements; the fragility of red blood cells was manually determined by the osmotic challenge. Compared with wild-type animals, LEWzizi rats showed strongly increased iron accumulation in choroid plexus epithelial cells as well as in ependymal cells of the ventricle lining. Concurrently, red blood cell macrocytosis, low-grade haemolysis and significant haemoglobin liberation from red blood cells were apparent in the peripheral blood of LEWzizi rats. Interestingly, elevated iron accumulation was also evident in kidney proximal tubules, which share similarities with the blood-CSF barrier. Our data underscore the importance of iron gateways into the CNS other than the classical route across microvessels in the CNS parenchyma. Our findings of pronounced choroid plexus iron overload in conjunction with peripheral iron overload and increased RBC fragility in LEWzizi rats may be seminal for future studies of human diseases, in which similar constellations are found.


Asunto(s)
Plexo Coroideo/química , Modelos Animales de Enfermedad , Epéndimo/química , Sobrecarga de Hierro/patología , Hierro/metabolismo , Animales , Hemólisis , Sobrecarga de Hierro/genética , Proteínas de la Membrana/genética , Mutación , Fragilidad Osmótica , Ratas
7.
Brain ; 143(5): 1431-1446, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32412053

RESUMEN

Conformation-sensitive antibodies against myelin oligodendrocyte glycoprotein (MOG) are detectable in patients with optic neuritis, myelitis, opticomyelitis, acute or multiphasic disseminated encephalomyelitis (ADEM/MDEM) and brainstem/cerebral cortical encephalitis, but are rarely detected in patients with prototypic multiple sclerosis. So far, there has been no systematic study on the pathological relationship between demyelinating lesions and cellular/humoral immunity in MOG antibody-associated disease. Furthermore, it is unclear whether the pathomechanisms of MOG antibody-mediated demyelination are similar to the demyelination patterns of multiple sclerosis, neuromyelitis optica spectrum disorders (NMOSD) with AQP4 antibody, or ADEM. In this study, we immunohistochemically analysed biopsied brain tissues from 11 patients with MOG antibody-associated disease and other inflammatory demyelinating diseases. Patient median onset age was 29 years (range 9-64), and the median interval from attack to biopsy was 1 month (range 0.5-96). The clinical diagnoses were ADEM (n = 2), MDEM (n = 1), multiple brain lesions without encephalopathy (n = 3), leukoencephalopathy (n = 3) and cortical encephalitis (n = 2). All these cases had multiple/extensive lesions on MRI and were oligoclonal IgG band-negative. Most demyelinating lesions in 10 of 11 cases showed a perivenous demyelinating pattern previously reported in ADEM (153/167 lesions) and a fusion pattern (11/167 lesions) mainly in the cortico-medullary junctions and white matter, and only three lesions in two cases showed confluent demyelinated plaques. In addition, 60 of 167 demyelinating lesions (mainly in the early phase) showed MOG-dominant myelin loss, but relatively preserved oligodendrocytes, which were distinct from those of AQP4 antibody-positive NMOSD exhibiting myelin-associated glycoprotein-dominant oligodendrogliopathy. In MOG antibody-associated diseases, MOG-laden macrophages were found in the perivascular spaces and demyelinating lesions, and infiltrated cells were abundant surrounding multiple blood vessels in and around the demyelinating lesions, mainly consisting of macrophages (CD68; 1814 ± 1188 cells/mm2), B cells (CD20; 468 ± 817 cells/mm2), and T cells (CD3; 2286 ± 1951 cells/mm2), with CD4-dominance (CD4+ versus CD8+; 1281 ± 1196 cells/mm2 versus 851 ± 762 cells/mm2, P < 0.01). Humoral immunity, evidenced by perivascular deposits of activated complements and immunoglobulins, was occasionally observed in some MOG antibody-associated demyelinating lesions, and the frequency was much lower than that in AQP4 antibody-positive NMOSD. Subpial lesions with perivenous demyelination were observed in both ADEM and cortical encephalitis. Our study suggests that ADEM-like perivenous inflammatory demyelination with MOG-dominant myelin loss is a characteristic finding of MOG antibody-associated disease regardless of whether the diagnostic criteria of ADEM are met. These pathological features are clearly different from those of multiple sclerosis and AQP4 antibody-positive NMOSD, suggesting an independent autoimmune demyelinating disease entity.


Asunto(s)
Encéfalo/patología , Enfermedades Autoinmunes Desmielinizantes SNC/inmunología , Enfermedades Autoinmunes Desmielinizantes SNC/patología , Glicoproteína Mielina-Oligodendrócito/inmunología , Adolescente , Adulto , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Acta Neuropathol Commun ; 8(1): 49, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32293546

RESUMEN

Most cases of neuromyelitis optica spectrum disorders (NMOSD) harbor pathogenic autoantibodies against the water channel aquaporin 4 (AQP4). Binding of these antibodies to AQP4 on astrocytes initiates damage to these cells, which culminates in the formation of large tissue destructive lesions in the central nervous system (CNS). Consequently, untreated patients may become permanently blind or paralyzed. Studies on the induction and breakage of tolerance to AQP4 could be of great benefit for NMOSD patients. So far, however, all attempts to create suitable animal models by active sensitization have failed. We addressed this challenge and identified peptides, which mimic the conformational AQP4 epitopes recognized by pathogenic antibodies of NMOSD patients. Here we show that these mimotopes can induce the production of AQP4-reactive antibodies in Lewis rats. Hence, our results provide a conceptual framework for the formation of such antibodies in NMOSD patients, and aid to improve immunization strategies for the creation of animal models suitable for tolerance studies in this devastating disease.


Asunto(s)
Acuaporina 4/inmunología , Autoanticuerpos/inmunología , Modelos Animales de Enfermedad , Epítopos/inmunología , Neuromielitis Óptica/inmunología , Animales , Autoantígenos/inmunología , Humanos , Inmunoglobulina G/inmunología , Ratas , Ratas Endogámicas Lew
9.
Acta Neuropathol Commun ; 7(1): 14, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30704526

RESUMEN

Human inflammatory or neurodegenerative diseases, such as progressive multiple sclerosis (MS), occur on a background of age-related microglia activation and iron accumulation as well as pre-existing neurodegeneration. Most experimental models for CNS diseases, however, are induced in rodents, which are naturally characterized by a homeostatic microglia phenotype, low cellular iron load and absence of neurodegeneration. Here, we show that naïve LEWzizi rats - Lewis rats with a zitter rat background - show a spontaneous phenotype partly mimicking the changes seen in human aging and particularly in the normal-appearing white and grey matter of patients with progressive MS. Using this model system, we further aimed to investigate (i) whether the acute monophasic MS model experimental autoimmune encephalomyelitis (EAE) transforms into chronic progressive disease and (ii) whether EAE-induced neuroinflammation and tissue damage aggravate on the LEWzizi background. We found that the pre-existing LEWzizi-specific pathology precipitated EAE-related neuroinflammation into forebrain areas, which are devoid of EAE lesions in normal Lewis rats. However, EAE-related tissue damage was neither modified by the LEWzizi-specific pathology nor did EAE-induced neuroinflammation modify the LEWzizi-related pathological process. Our data indicate that the interaction between pre-activated microglia and CD4+ autoreactive T cells during the induction and propagation of tissue damage in the CNS is limited.


Asunto(s)
Encéfalo/fisiopatología , Encefalitis/fisiopatología , Encefalomielitis Autoinmune Experimental/fisiopatología , Microglía/fisiología , Animales , Animales no Consanguíneos , Axones/patología , Encéfalo/patología , Modelos Animales de Enfermedad , Encefalitis/complicaciones , Encefalitis/patología , Encefalomielitis Autoinmune Experimental/complicaciones , Encefalomielitis Autoinmune Experimental/patología , Humanos , Hierro/metabolismo , Masculino , Microglía/patología , Vaina de Mielina/patología , Ratas Endogámicas Lew , Ratas Sprague-Dawley , Linfocitos T/patología , Linfocitos T/fisiología
10.
Acta Neuropathol ; 137(3): 467-485, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30564980

RESUMEN

It is well established that the binding of pathogenic aquaporin-4 (AQP4)-specific autoantibodies to astrocytes may initiate a cascade of events culminating in the destruction of these cells and in the formation of large tissue-destructive lesions typical for patients with neuromyelitis optica spectrum disorders (NMOSD). To date, not a single experimental study has shown that the systemic presence of the antibody alone can induce any damage to the central nervous system (CNS), while pathological studies on brains of NMOSD patients suggested that there might be ways for antibody entry and subsequent tissue damage. Here, we systemically applied a highly pathogenic, monoclonal antibody with high affinity to AQP4 over prolonged period of time to rats, and show that AQP4-abs can enter the CNS on their own, via circumventricular organs and meningeal or parenchymal blood vessels, that these antibodies initiate the formation of radically different lesions with AQP4 loss, depending on their mode and site of entry, and that lesion formation is much more efficient in the presence of encephalitogenic T-cell responses. We further demonstrate that the established tissue-destructive lesions trigger the formation of additional lesions by short and far reaching effects on blood vessels and their branches, and that AQP4-abs have profound effects on the AQP4 expression in peripheral tissues which counter-act possible titer loss by antibody absorption outside the CNS. Cumulatively, these data indicate that directly induced pathological changes caused by AQP4-abs inside and outside the CNS are efficient drivers of disease evolution in seropositive organisms.


Asunto(s)
Acuaporina 4/inmunología , Autoanticuerpos/farmacología , Autoantígenos/inmunología , Neuromielitis Óptica/inmunología , Animales , Autoanticuerpos/inmunología , Ratas , Ratas Endogámicas Lew , Ratas Desnudas
11.
Curr Opin Neurol ; 31(3): 325-333, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29465432

RESUMEN

PURPOSE OF REVIEW: Neuromyelitis optica spectrum disorders (NMOSD) are severe inflammatory diseases of the central nervous system (CNS), with the presence of aquaporin 4 (AQP4)-specific serum antibodies in the vast majority of patients, and with the presence of myelin oligodendrocyte glycoprotein (MOG)-specific antibodies in approximately 40% of all AQP4-antibody negative NMOSD patients. Despite differences in antigen recognition, the preferred sites of lesions are similar in both groups of patients: They localize to the spinal cord and to the anterior visual pathway including retina, optic nerves, chiasm, and optic tracts, and - to lesser extent - also to certain predilection sites in the brain. RECENT FINDINGS: The involvement of T cells in the formation of NMOSD lesions has been challenged for quite some time. However, several recent findings demonstrate the key role of T cells for lesion formation and localization. Studies on the evolution of lesions in the spinal cord of NMOSD patients revealed a striking similarity of early NMOSD lesions with those observed in corresponding T-cell-induced animal models, both in lesion formation and in lesion localization. Studies on retinal abnormalities in NMOSD patients and corresponding animals revealed the importance of T cells for the very early stages of retinal lesions which eventually culminate in damage to Müller cells and to the retinal nerve fiber layer. Finally, a study on cerebrospinal fluid (CSF) barrier pathology demonstrated that NMOSD immunopathology extends beyond perivascular astrocytic foot processes to include the pia, the ependyma, and the choroid plexus, and that diffusion of antibodies from the CSF could further influence lesion formation in NMOSD patients. SUMMARY: The pathological changes observed in AQP4-antibody positive and MOG-antibody positive NMOSD patients are strikingly similar to those found in corresponding animal models, and many mechanisms which determine lesion localization in experimental animals seem to closely reflect the human situation.


Asunto(s)
Encéfalo/patología , Neuromielitis Óptica/patología , Retina/patología , Médula Espinal/patología , Acuaporina 4/inmunología , Autoanticuerpos , Encéfalo/inmunología , Humanos , Glicoproteína Mielina-Oligodendrócito/inmunología , Neuromielitis Óptica/inmunología , Retina/inmunología , Médula Espinal/inmunología
12.
Acta Biomater ; 66: 335-349, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29191510

RESUMEN

Peripheral nerve fibrosis and painful adhesions are common, recurring pathological sequelae following injury. In this study, vital human amnion (hAM), an increasingly interesting biomaterial for regenerative medicine, was investigated as a novel therapy. hAM was first analyzed in vitro regarding its anti-adhesive characteristics. Then, the reflected region of hAM which was identified as more suitable, was transplanted into female Sprague Dawley rats with recurring sciatic nerve scarring (n = 24) and compared with untreated controls (n = 30) at one, four and twelve weeks. Immune response and fibrosis were investigated by (immuno)histochemical analysis. Nerve structure was examined and function determined using electrophysiology and gait analysis. Here we identified strongly reduced adhesions in the hAM-treated rats, displaying a significant difference at four weeks post transplantation compared to untreated controls (p = .0052). This correlated with the in vitro cell attachment test on hAM explants, which demonstrated a distinctly limited ability of fibroblasts to adhere to amniotic epithelial cells. Upon hAM transplantation, significantly less intraneural fibrosis was identified at the later time points. Moreover, hAM-treated rats exhibited a significantly higher sciatic functional index (SFI) after four weeks compared to controls (p < .05), which indicated a potentially pro-regenerative effect of hAM. As a possible explanation, an impact of hAM on the endogenous immune response, including T cell and macrophage subsets, was indicated. We conclude that hAM is strongly effective against recurring nerve scarring and induces an anti-fibrotic and pro-regenerative effect, making it highly promising for treating adhesion-related disorders. STATEMENT OF SIGNIFICANCE: Abnormal fibrotic bonding of tissues, frequently involving peripheral nerves, affects millions of people worldwide. These so-called adhesions usually cause severe pain and drastically reduce quality of life. To date, no adequate treatment exists and none is routinely used in the clinical practice. In this study, vital human amnion, the innermost of the fetal membranes, was transplanted in a rat model of peripheral nerve scarring and recurring adhesions as novel therapeutic approach. Amniotic cells have already demonstrated to feature stem-cell like properties and produce pro-regenerative factors, which makes the amnion an increasingly promising biomaterial for regenerative medicine. We identified that its transplantation was very effective against peripheral nerve scarring and distinctly reduced recurring adhesions. Moreover, we identified a pro-regenerative effect. This study showed that the amnion is a highly promising novel therapeutic approach for adhesion-related disorders.


Asunto(s)
Amnios/trasplante , Cicatriz/patología , Nervio Ciático/patología , Adherencias Tisulares/prevención & control , Adherencias Tisulares/terapia , Animales , Adhesión Celular , Cicatriz/fisiopatología , Modelos Animales de Enfermedad , Femenino , Fibrosis , Humanos , Ratones , Células 3T3 NIH , Regeneración Nerviosa , Ratas Sprague-Dawley , Recuperación de la Función , Nervio Ciático/fisiopatología , Adherencias Tisulares/inmunología , Adherencias Tisulares/fisiopatología
13.
J Neuroinflammation ; 14(1): 208, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29070051

RESUMEN

BACKGROUND: Antibodies to the myelin oligodendrocyte glycoprotein (MOG) are associated with a subset of inflammatory demyelinating diseases of the central nervous system such as acute disseminated encephalomyelitis and neuromyelitis optica spectrum disorders. However, whether human MOG antibodies are pathogenic or an epiphenomenon is still not completely clear. Although MOG is highly conserved within mammals, previous findings showed that not all human MOG antibodies bind to rodent MOG. We therefore hypothesized that human MOG antibody-mediated pathology in animal models may only be evident using species-specific MOG antibodies. METHODS: We screened 80 human MOG antibody-positive samples for their reactivity to mouse and rat MOG using either a live cell-based assay or immunohistochemistry on murine, rat, and human brain tissue. Selected samples reactive to either human MOG or rodent MOG were subsequently tested for their ability to induce complement-mediated damage in murine organotypic brain slices or enhance demyelination in an experimental autoimmune encephalitis (EAE) model in Lewis rats. The MOG monoclonal antibody 8-18-C5 was used as a positive control. RESULTS: Overall, we found that only a subset of human MOG antibodies are reactive to mouse (48/80, 60%) or rat (14/80, 18%) MOG. Purified serum antibodies from 10 human MOG antibody-positive patients (8/10 reactive to mouse MOG, 6/10 reactive to rat MOG), 3 human MOG-negative patients, and 3 healthy controls were tested on murine organotypic brain slices. Purified IgG from one patient with high titers of anti-human, mouse, and rat MOG antibodies and robust binding to myelin tissue produced significant, complement-mediated myelin loss in organotypic brain slices, but not in the EAE model. Monoclonal 8-18-C5 MOG antibody caused complement-mediated demyelination in both the organotypic brain slice model and in EAE. CONCLUSION: This study shows that a subset of human MOG antibodies can induce complement-dependent pathogenic effects in a murine ex vivo animal model. Moreover, a high titer of species-specific MOG antibodies may be critical for demyelinating effects in mouse and rat animal models. Therefore, both the reactivity and titer of human MOG antibodies must be considered for future pathogenicity studies.


Asunto(s)
Anticuerpos/metabolismo , Cerebelo/metabolismo , Proteínas del Sistema Complemento/metabolismo , Enfermedades Desmielinizantes/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Adolescente , Adulto , Anciano , Animales , Cerebelo/patología , Niño , Preescolar , Enfermedades Desmielinizantes/patología , Femenino , Células HEK293 , Humanos , Lactante , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Neuromielitis Óptica/metabolismo , Neuromielitis Óptica/patología , Técnicas de Cultivo de Órganos , Ratas , Ratas Endogámicas Lew , Adulto Joven
14.
Dis Model Mech ; 10(8): 1015-1025, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28550101

RESUMEN

Inflammation, fibrosis and perineural adhesions with the surrounding tissue are common pathological processes following nerve injury and surgical interventions on peripheral nerves in human patients. These features can reoccur following external neurolysis, currently the most common surgical treatment for peripheral nerve scarring, thus leading to renewed nerve function impairment and chronic pain. To enable a successful evaluation of new therapeutic approaches, it is crucial to use a reproducible animal model that mimics the main clinical symptoms occurring in human patients. However, a clinically relevant model combining both histological and functional alterations has not been published to date. We therefore developed a reliable rat model that exhibits the essential pathological processes of peripheral nerve scarring. In our study, we present a novel method for the induction of nerve scarring by applying glutaraldehyde-containing glue that is known to cause nerve injury in humans. After a 3-week contact period with the sciatic nerve in female Sprague Dawley rats, we could demonstrate severe intra- and perineural scarring that resulted in grade 3 adhesions and major impairments in the electrophysiological peak amplitude compared with sham control (P=0.0478). Immunohistochemical analysis of the nerve structure revealed vigorous nerve inflammation and recruitment of T cells and macrophages. Also, distinct nerve degeneration was determined by immunostaining. These pathological alterations were further reflected in significant functional deficiencies, as determined by the analysis of relevant gait parameters as well as the quantification of the sciatic functional index starting at week 1 post-operation (P<0.01). Moreover, with this model we could, for the first time, demonstrate not only the primary formation, but also the recurrence, of severe adhesions 1 week after glue removal, imitating a major clinical challenge. As a comparison, we tested a published model for generating perineural fibrotic adhesions, which did not result in significant pathological changes. Taken together, we established an easily reproducible and reliable rat model for peripheral nerve scarring that allows for the effective testing of new therapeutic strategies.


Asunto(s)
Cicatriz/patología , Complicaciones Posoperatorias/etiología , Nervio Ciático/patología , Adherencias Tisulares/patología , Potenciales de Acción , Animales , Cicatriz/fisiopatología , Modelos Animales de Enfermedad , Femenino , Fibrosis , Marcha , Glutaral , Macrófagos/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Complicaciones Posoperatorias/patología , Ratas Sprague-Dawley , Recurrencia , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología , Linfocitos T/metabolismo , Adherencias Tisulares/fisiopatología
15.
Front Immunol ; 8: 529, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28533781

RESUMEN

Myelin oligodendrocyte glycoprotein (MOG), a member of the immunoglobulin (Ig) superfamily, is a myelin protein solely expressed at the outermost surface of myelin sheaths and oligodendrocyte membranes. This makes MOG a potential target of cellular and humoral immune responses in inflammatory demyelinating diseases. Due to its late postnatal developmental expression, MOG is an important marker for oligodendrocyte maturation. Discovered about 30 years ago, it is one of the best-studied autoantigens for experimental autoimmune models for multiple sclerosis (MS). Human studies, however, have yielded controversial results on the role of MOG, especially MOG antibodies (Abs), as a biomarker in MS. But with improved detection methods using different expression systems to detect Abs in patients' samples, this is meanwhile no longer the case. Using cell-based assays with recombinant full-length, conformationally intact MOG, several recent studies have revealed that MOG Abs can be found in a subset of predominantly pediatric patients with acute disseminated encephalomyelitis (ADEM), aquaporin-4 (AQP4) seronegative neuromyelitis optica spectrum disorders (NMOSD), monophasic or recurrent isolated optic neuritis (ON), or transverse myelitis, in atypical MS and in N-methyl-d-aspartate receptor-encephalitis with overlapping demyelinating syndromes. Whereas MOG Abs are only transiently observed in monophasic diseases such as ADEM and their decline is associated with a favorable outcome, they are persistent in multiphasic ADEM, NMOSD, recurrent ON, or myelitis. Due to distinct clinical features within these diseases it is controversially disputed to classify MOG Ab-positive cases as a new disease entity. Neuropathologically, the presence of MOG Abs is characterized by MS-typical demyelination and oligodendrocyte pathology associated with Abs and complement. However, it remains unclear whether MOG Abs are a mere inflammatory bystander effect or truly pathogenetic. This article provides deeper insight into recent developments, the clinical relevance of MOG Abs and their role in the immunpathogenesis of inflammatory demyelinating disorders.

16.
Clin Exp Neuroimmunol ; 8(Suppl Suppl 1): 3-7, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28344667

RESUMEN

Recent work from our laboratory, using different models of experimental neuromyelitis optica spectrum disorder (NMOSD), has led to a number of observations that might be highly relevant for NMOSD patients. For example: (i) in the presence of neuromyelitis optica immunoglobulin G, astrocyte-destructive lesions can be initiated by CD4+ T cells when these cells recognize aquaporin 4 (AQP4), but also when they recognize other antigens of the central nervous system. The only important prerequisite is that the T cells have to be activated within the central nervous system by "their" specific antigen. Recently activated CD4+ T cells with yet unknown antigen specificity are also found in human NMOSD lesions. (ii) The normal immune repertoire might contain AQP4-specific T cells, which are highly encephalitogenic on activation. (iii) The retina might be a primary target of AQP4-specific T cells and neuromyelitis optica immunoglobulin G: AQP4-specific T cells alone are sufficient to cause retinitis with low-grade axonal pathology in the retinal nerve fiber/ganglionic cell layer. A thinning of these layers is also observed in NMOSD patients, where it is thought to be a consequence of optic neuritis. Neuromyelitis optica immunoglobulin G might target cellular processes of Müller cells and cause their loss of AQP4 reactivity, when AQP4-specific T cells open the blood-retina barrier in the outer plexiform layer. Patchy loss of AQP4 reactivity on Müller cells of NMOSD patients has been recently described. Cumulatively, our findings in experimental NMOSD suggest that both CD4+ T cell and antibody responses directed against AQP4 might play an important role in the pathogenesis of tissue destruction seen in NMOSD.

17.
Acta Neuropathol ; 133(2): 223-244, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27766432

RESUMEN

One of the most frequent statements, provided in different variations in the introduction of experimental studies on multiple sclerosis (MS), is that "Multiple sclerosis is a demyelinating autoimmune disease and experimental autoimmune encephalomyelitis (EAE) is a suitable model to study its pathogenesis". However, so far, no single experimental model covers the entire spectrum of the clinical, pathological, or immunological features of the disease. Many different models are available, which proved to be highly useful for studying different aspects of inflammation, demyelination, remyelination, and neurodegeneration in the central nervous system. However, the relevance of results from such models for MS pathogenesis has to be critically validated. Current EAE models are mainly based on inflammation, induced by auto-reactive CD4+ T-cells, and these models reflect important aspects of MS. However, pathological data and results from clinical trials in MS indicate that CD8+ T-cells and B-lymphocytes may play an important role in propagating inflammation and tissue damage in established MS. Viral models may reflect key features of MS-like inflammatory demyelination, but are difficult to use due to their very complex pathogenesis, involving direct virus-induced and immune-mediated mechanisms. Furthermore, evidence for a role of viruses in MS pathogenesis is indirect and limited, and an MS-specific virus infection has not been identified so far. Toxic models are highly useful to unravel mechanisms of de- and remyelination, but do not reflect other important aspects of MS pathology and pathogenesis. For all these reasons, it is important to select the right experimental model to answer specific questions in MS research.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Modelos Animales de Enfermedad , Humanos
18.
Acta Neuropathol Commun ; 4(1): 82, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27503347

RESUMEN

Neuromyelitis optica/spectrum disorder (NMO/SD) is a severe, inflammatory disease of the central nervous system (CNS). In the majority of patients, it is associated with the presence of pathogenic serum autoantibodies (the so-called NMO-IgGs) directed against the water channel aquaporin 4 (AQP4), and with the formation of large, astrocyte-destructive lesions in spinal cord and optic nerves. A large number of recent studies using optical coherence tomography (OCT) demonstrated that damage to optic nerves in NMO/SD is also associated with retinal injury, as evidenced by retinal nerve fiber layer (RNFL) thinning and microcystic inner nuclear layer abnormalities. These studies concluded that retinal injury in NMO/SD patients results from secondary neurodegeneration triggered by optic neuritis.However, the eye also contains cells expressing AQP4, i.e., Müller cells and astrocytes in the retina, epithelial cells of the ciliary body, and epithelial cells of the iris, which raised the question whether the eye can also be a primary target in NMO/SD. Here, we addressed this point in experimental NMO/SD (ENMO) induced in Lewis rat by transfer of AQP4268-285-specific T cells and NMO-IgG.We show that these animals show retinitis and subsequent dysfunction/damage of retinal axons and neurons, and that this pathology occurs independently of the action of NMO-IgG. We further show that in the retinae of ENMO animals Müller cell side branches lose AQP4 reactivity, while retinal astrocytes and Müller cell processes in the RNFL/ganglionic cell layers are spared. These changes only occur in the presence of both AQP4268-285-specific T cells and NMO-IgG.Cumulatively, our data show that damage to retinal cells can be a primary event in NMO/SD.


Asunto(s)
Acuaporina 4/metabolismo , Inmunoglobulina G/metabolismo , Neuromielitis Óptica/inmunología , Retina/inmunología , Retinitis/inmunología , Linfocitos T/metabolismo , Animales , Acuaporina 4/genética , Astrocitos/inmunología , Astrocitos/patología , Axones/inmunología , Axones/patología , Modelos Animales de Enfermedad , Neuromielitis Óptica/complicaciones , Neuromielitis Óptica/patología , Ratas Endogámicas Lew , Retina/patología , Retinitis/etiología , Retinitis/patología , Linfocitos T/patología
19.
J Immunol ; 197(4): 1111-7, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27412413

RESUMEN

Monoclonal Abs against CD20 reduce the number of relapses in multiple sclerosis (MS); commonly this effect is solely attributed to depletion of B cells. Recently, however, a subset of CD3(+)CD20(+) T cells has been described that is also targeted by the anti-CD20 mAb rituximab. Because the existence of cells coexpressing CD3 and CD20 is controversial and features of this subpopulation are poorly understood, we studied this issue in detail. In this study, we confirm that 3-5% of circulating human T cells display CD20 on their surface and transcribe both CD3 and CD20. We report that these CD3(+)CD20(+) T cells pervade thymus, bone marrow, and secondary lymphatic organs. They are found in the cerebrospinal fluid even in the absence of inflammation; in the cerebrospinal fluid of MS patients they occur at a frequency similar to B cells. Phenotypically, these T cells are enriched in CD8(+) and CD45RO(+) memory cells and in CCR7(-) cells. Functionally, they show a higher frequency of IL-4-, IL-17-, IFN-γ-, and TNF-α-producing cells compared with T cells lacking CD20. CD20-expressing T cells respond variably to immunomodulatory treatments given to MS patients: they are reduced by fingolimod, alemtuzumab, and dimethyl fumarate, whereas natalizumab disproportionally increases them in the blood. After depletion by rituximab, they show earlier and higher repopulation than CD20(+) B cells. Taken together, human CD3(+)CD20(+) T cells pervade lymphatic organs and the cerebrospinal fluid, have a strong ability to produce different cytokines, and respond to MS disease modifying drugs.


Asunto(s)
Antígenos CD20/biosíntesis , Complejo CD3/biosíntesis , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Alemtuzumab , Anticuerpos Monoclonales Humanizados/farmacología , Separación Celular , Citocinas/biosíntesis , Dimetilfumarato/farmacología , Clorhidrato de Fingolimod/farmacología , Citometría de Flujo , Humanos , Factores Inmunológicos/farmacología , Natalizumab/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/efectos de los fármacos , Linfocitos T/citología , Linfocitos T/efectos de los fármacos
20.
Handb Clin Neurol ; 133: 121-43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27112675

RESUMEN

Over the last decade, neurologic autoimmunity has become a major consideration in the diagnosis and management of patients with many neurologic presentations. The nature of the associated antibodies and their targets has led to appreciation of the importance of the accessibility of the target antigen to antibodies, and a partial understanding of the different mechanisms that can follow antibody binding. This chapter will first describe the basic principles of autoimmune inflammation and tissue damage in the central and peripheral nervous system, and will then demonstrate what has been learnt about neurologic autoimmunity from circumstantial clinical evidence and from passive, active, and occasionally spontaneous or genetic animal models. It will cover neurologic autoimmune diseases ranging from disorders of neuromuscular transmission, peripheral and ganglionic neuropathy, to diseases of the central nervous system, where autoantibodies are either pathogenic and cause destruction or changes in function of their targets, where they are harmless bystanders of T-cell-mediated tissue damage, or are not involved at all. Finally, this chapter will summarize the relevance of current animal models for studying the different neurologic autoimmune diseases, and it will identify aspects where future animal models need to be improved to better reflect the disease reality experienced by affected patients, e.g., the chronicity or the relapsing/remitting nature of their disease.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Autoinmunidad , Modelos Animales de Enfermedad , Neurología , Animales , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/terapia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...