Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1156842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744375

RESUMEN

Bronchopulmonary dysplasia (BPD) is a chronic lung disease in preterm birth survivors characterized by inflammation, impaired alveolarization and dysmorphic vasculature. Activated IL-17A+ lymphocytes are key drivers of inflammation in preterm infants. We have shown that in immature mice chronic airway exposure to lipopolysaccharide (LPS) induces pulmonary inflammation, increased IL-17a expression, and hypoalveolarization, a BPD-like phenotype. The source of IL-17a and contribution to lung pathology is unknown. The natural-killer group 2, member D (NKG2D) receptor mediates activation and IL-17a production in γδ T cells by binding to stress molecules. LPS induces NKG2D ligand expression, including Rae-1 and MULT1. We hypothesized that IL-17a+ γδ T cells and NKG2D signaling mediate neonatal LPS-induced lung injury. Immature C57BL/6J (wild type), Nkg2d-/- or Tcrd-/- (lacking γδ T cells) mice were inoculated with 3ug/10ul of LPS from E. coli O26:B6 or 10ul of PBS intranasally on day of life 3, 5, 7, and 10. Selected mice were treated with neutralizing antibodies against IL-17a, or NKG2D intraperitoneally. Lung immune cells were assessed by flow cytometry and gene expression was analyzed by qPCR. Alveolar growth was assessed by lung morphometry. We established that anti-IL-17a antibody treatment attenuated LPS-induced hypoalveolarization. We found that LPS induced the fraction of IL-17a+NKG2D+ γδ T cells, a major source of IL-17a in the neonatal lung. LPS also induced lung mRNA expression of NKG2D, Rae-1, MULT1, and the DNA damage regulator p53. Anti-NKG2D treatment attenuated the effect of LPS on γδ T cell IL-17a expression, immune cell infiltration and hypoalveolarization. LPS-induced hypoalveolarization was also attenuated in Nkg2d-/- and Tcrd-/- mice. In tracheal aspirates of preterm infants IL-17A and its upstream regulator IL-23 were higher in infants who later developed BPD. Also, human ligands of NKG2D, MICA and MICB were present in the aspirates and MICA correlated with median FiO2. Our novel findings demonstrate a central role for activated IL-17a+ γδ T cells and NKG2D signaling in neonatal LPS-induced lung injury. Future studies will determine the role of NKG2D ligands and effectors, other NKG2D+ cells in early-life endotoxin-induced lung injury and inflammation with a long-term goal to understand how inflammation contributes to BPD pathogenesis.


Asunto(s)
Displasia Broncopulmonar , Interleucina-17 , Lesión Pulmonar , Subfamilia K de Receptores Similares a Lectina de Células NK , Animales , Humanos , Recién Nacido , Ratones , Endotoxinas , Escherichia coli , Recien Nacido Prematuro , Inflamación , Ligandos , Lipopolisacáridos , Ratones Endogámicos C57BL , Subfamilia K de Receptores Similares a Lectina de Células NK/genética
2.
Front Immunol ; 14: 1116675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845082

RESUMEN

Premature infants with chronic lung disease, bronchopulmonary dysplasia (BPD), develop recurrent cough and wheezing following respiratory viral infections. The mechanisms driving the chronic respiratory symptoms are ill-defined. We have shown that hyperoxic exposure of neonatal mice (a model of BPD) increases the activated lung CD103+ dendritic cells (DCs) and these DCs are required for exaggerated proinflammatory responses to rhinovirus (RV) infection. Since CD103+ DC are essential for specific antiviral responses and their development depends on the growth factor Flt3L, we hypothesized that early-life hyperoxia stimulates Flt3L expression leading to expansion and activation of lung CD103+ DCs and this mediates inflammation. We found that hyperoxia numerically increased and induced proinflammatory transcriptional signatures in neonatal lung CD103+ DCs, as well as CD11bhi DCs. Hyperoxia also increased Flt3L expression. Anti-Flt3L antibody blocked CD103+ DC development in normoxic and hyperoxic conditions, and while it did not affect the baseline number of CD11bhi DCs, it neutralized the effect of hyperoxia on these cells. Anti-Flt3L also inhibited hyperoxia-induced proinflammatory responses to RV. In tracheal aspirates from preterm infants mechanically-ventilated for respiratory distress in the first week of life levels of FLT3L, IL-12p40, IL-12p70 and IFN-γ were higher in infants who went on to develop BPD and FLT3L levels positively correlated with proinflammatory cytokines levels. This work highlights the priming effect of early-life hyperoxia on lung DC development and function and the contribution of Flt3L in driving these effects.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Animales , Humanos , Recién Nacido , Ratones , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Células Dendríticas , Hiperoxia/metabolismo , Recien Nacido Prematuro , Pulmón
3.
Front Immunol ; 13: 792716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35173718

RESUMEN

Prematurity and bronchopulmonary dysplasia (BPD) increase the risk of asthma later in life. Supplemental oxygen therapy is a risk factor for chronic respiratory symptoms in infants with BPD. Hyperoxia induces cell injury and release of damage-associated molecular patterns (DAMPs). Cytoskeletal filamentous actin (F-actin) is a DAMP which binds Clec9a, a C-type lectin selectively expressed on CD103+ dendritic cells (DCs). Co-stimulation of Clec9a and TLR3 induces maximal proinflammatory responses. We have shown that neonatal hyperoxia (a model of BPD) increases lung IL-12+Clec9a+CD103+ DCs, pro-inflammatory responses and airway hyperreactivity following rhinovirus (RV) infection. CD103+ DCs and Clec9a are required for these responses. Hyperoxia increases F-actin levels in bronchoalveolar lavage fluid (BALF). We hypothesized that the F-actin severing protein gelsolin attenuates neonatal hyperoxia-induced Clec9a+CD103+ DC-dependent pro-inflammatory responses to RV and preserves alveolarization. We exposed neonatal mice to hyperoxia and treated them with gelsolin intranasally. Subsequently we inoculated the mice with RV intranasally. Alternatively, we inoculated normoxic neonatal mice with BALF from hyperoxia-exposed mice (hyperoxic BALF), RV and gelsolin. We analyzed lung gene expression two days after RV infection. For in vitro studies, lung CD11c+ cells were isolated from C57BL/6J or Clec9agfp-/- mice and incubated with hyperoxic BALF and RV. Cells were analyzed by flow cytometry. In neonatal mice, gelsolin blocked hyperoxia-induced Il12p40, TNF-α and IFN-γ mRNA and protein expression in response to RV infection. Similar effects were observed when gelsolin was co-administered with hyperoxic BALF and RV. Gelsolin decreased F-actin levels in hyperoxic BALF in vitro and inhibited hyperoxia-induced D103lo DC expansion and inflammation in vivo. Gelsolin also attenuated hyperoxia-induced hypoalveolarization. Further, incubation of lung CD11c+ cells from WT and Clec9agfp-/- mice with hyperoxic BALF and RV, showed Clec9a is required for maximal hyperoxic BALF and RV induced IL-12 expression in CD103+ DCs. Finally, in tracheal aspirates from mechanically ventilated human preterm infants the F-actin to gelsolin ratio positively correlates with FiO2, and gelsolin levels decrease during the first two weeks of mechanical ventilation. Collectively, our findings demonstrate a promising role for gelsolin, administered by inhalation into the airway to treat RV-induced exacerbations of BPD and prevent chronic lung disease.


Asunto(s)
Displasia Broncopulmonar/tratamiento farmacológico , Gelsolina/administración & dosificación , Hiperoxia/fisiopatología , Lectinas Tipo C/metabolismo , Infecciones por Picornaviridae/tratamiento farmacológico , Receptores Inmunológicos/metabolismo , Administración por Inhalación , Animales , Animales Recién Nacidos/metabolismo , Antígenos CD/metabolismo , Displasia Broncopulmonar/virología , Femenino , Humanos , Recién Nacido , Cadenas alfa de Integrinas/metabolismo , Interleucina-12/metabolismo , Lectinas Tipo C/genética , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Terapia por Inhalación de Oxígeno/efectos adversos , Infecciones por Picornaviridae/virología , Receptores Inmunológicos/genética , Pruebas de Función Respiratoria , Rhinovirus/aislamiento & purificación
4.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L193-L204, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112186

RESUMEN

Premature infants, especially those with bronchopulmonary dysplasia (BPD), develop recurrent severe respiratory viral illnesses. We have shown that hyperoxic exposure of immature mice, a model of BPD, increases lung IL-12-producing Clec9a+ CD103+ dendritic cells (DCs), pro-inflammatory responses, and airway hyperreactivity following rhinovirus (RV) infection. However, the requirement for CD103+ DCs and Clec9a, a DAMP receptor that binds necrotic cell cytoskeletal filamentous actin (F-actin), for RV-induced inflammatory responses has not been demonstrated. To test this, 2-day-old C57BL/6J, CD103+ DC-deficient Batf3-/- or Clec9agfp-/- mice were exposed to normoxia or hyperoxia for 14 days. Also, selected mice were treated with neutralizing antibody against CD103. Immediately after hyperoxia, the mice were inoculated with RV intranasally. We found that compared with wild-type mice, hyperoxia-exposed Batf3-/- mice showed reduced levels of IL-12p40, IFN-γ, and TNF-α, fewer IFN-γ-producing CD4+ T cells, and decreased airway responsiveness following RV infection. Similar effects were observed in anti-CD103-treated and Clec9agfp-/- mice. Furthermore, hyperoxia increased airway dead cell number and extracellular F-actin levels. Finally, studies in preterm infants with respiratory distress syndrome showed that tracheal aspirate CLEC9A expression positively correlated with IL12B expression, consistent with the notion that CLEC9A+ cells are responsible for IL-12 production in humans as well as mice. We conclude that CD103+ DCs and Clec9a are required for hyperoxia-induced pro-inflammatory responses to RV infection. In premature infants, Clec9a-mediated activation of CD103+ DCs may promote pro-inflammatory responses to viral infection, thereby driving respiratory morbidity.


Asunto(s)
Antígenos CD/metabolismo , Células Dendríticas/inmunología , Hiperoxia/fisiopatología , Cadenas alfa de Integrinas/metabolismo , Lectinas Tipo C/fisiología , Pulmón/inmunología , Neumonía/inmunología , Receptores Inmunológicos/fisiología , Síndrome de Dificultad Respiratoria del Recién Nacido/inmunología , Animales , Animales Recién Nacidos , Antígenos CD/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro/inmunología , Cadenas alfa de Integrinas/genética , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Picornaviridae/complicaciones , Infecciones por Picornaviridae/virología , Neumonía/virología , Proteínas Represoras/fisiología , Síndrome de Dificultad Respiratoria del Recién Nacido/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido/patología , Rhinovirus/aislamiento & purificación
5.
Front Immunol ; 11: 579628, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117383

RESUMEN

The histopathology of bronchopulmonary dysplasia (BPD) includes hypoalveolarization and interstitial thickening due to abnormal myofibroblast accumulation. Chorioamnionitis and sepsis are major risk factors for BPD development. The cellular mechanisms leading to these lung structural abnormalities are poorly understood. We used an animal model with repeated lipopolysaccharide (LPS) administration into the airways of immature mice to simulate prolonged airway exposure to gram-negative bacteria, focusing on the role of C-C chemokine receptor type 2-positive (CCR2+) exudative macrophages (ExMf). Repetitive LPS exposure of immature mice induced persistent hypoalveolarization observed at 4 and 18 days after the last LPS administration. LPS upregulated the expression of lung pro-inflammatory cytokines (TNF-α, IL-17a, IL-6, IL-1ß) and chemokines (CCL2, CCL7, CXCL1, and CXCL2), while the expression of genes involved in lung alveolar and mesenchymal cell development (PDGFR-α, FGF7, FGF10, and SPRY1) was decreased. LPS induced recruitment of ExMf, including CCR2+ ExMf, as well as other myeloid cells like DCs and neutrophils. Lungs of LPS-exposed CCR2-/- mice showed preserved alveolar structure and normal patterns of α-actin and PDGFRα expression at the tips of the secondary alveolar crests. Compared to wild type mice, a significantly lower number of ExMf, including TNF-α+ ExMf were recruited to the lungs of CCR2-/- mice following repetitive LPS exposure. Further, pharmacological inhibition of TLR4 with TAK-242 also blocked the effect of LPS on alveolarization, α-SMA and PDGFRα expression. TNF-α and IL-17a induced α-smooth muscle actin expression in the distal airspaces of E16 fetal mouse lung explants. In human preterm lung mesenchymal stromal cells, TNF-α reduced mRNA and protein expression of PDGFR-α and decreased mRNA expression of WNT2, FOXF2, and SPRY1. Collectively, our findings demonstrate that in immature mice repetitive LPS exposure, through TLR4 signaling increases lung inflammation and impairs lung alveolar growth in a CCR2-dependent manner.


Asunto(s)
Displasia Broncopulmonar/metabolismo , Inflamación/inmunología , Macrófagos/inmunología , Alveolos Pulmonares/patología , Receptores CCR2/metabolismo , Animales , Células Cultivadas , Enfermedad Crónica , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores CCR2/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...