Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 33(46): 13407-13414, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29058446

RESUMEN

The challenge of assembling semiconducting single-wall carbon nanotubes (s-SWCNTs) into densely packed, aligned arrays has limited the scalability and practicality of high-performance nanotube-based electronics technologies. The aligned deposition of s-SWCNTs via floating evaporative self-assembly (FESA) has promise for overcoming this challenge; however, the mechanisms behind FESA need to be elucidated before the technique can be improved and scaled. Here, we gain a deeper understanding of the FESA process by studying a stationary analogue of FESA and optically tracking the dynamics of the organic ink/water/substrate and ink/air/substrate interfaces during the typical FESA process. We observe that the ink/water interface serves to collect and confine the s-SWCNTs before alignment and that the deposition of aligned bands of s-SWCNTs occurs at the ink/water/substrate contact line during the depinning of both the ink/air/substrate and ink/water/substrate contact lines. We also demonstrate improved control over the interband spacing, bandwidth, and packing density of FESA-aligned s-SWCNT arrays. The substrate lift rate (5-15 mm min-1) is used to tailor the interband spacing from 90 to 280 µm while maintaining a constant aligned s-SWCNT bandwidth of 50 µm. Varying the s-SWCNT ink concentration (0.75-10 µg mL-1) allows the control of the bandwidth from 2.5 to 45 µm. A steep increase in packing density is observed from 11 s-SWCNTs µm-1 at 0.75 µg mL-1 to 20 s-SWCNTs µm-1 at 2 µg mL-1, with a saturated packing density of ∼24 s-SWCNTs µm-1. We also demonstrate the scaling of FESA to align s-SWCNTs on a 2.5 × 2.5 cm2 scale while preserving high-quality alignment on the nanometer scale. These findings help realize the scalable fabrication of well-aligned s-SWCNT arrays to serve as large-area platforms for next-generation semiconductor electronics.

2.
ACS Appl Mater Interfaces ; 9(46): 40734-40742, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29067812

RESUMEN

Separation of electronically pure, narrowly dispersed, pristine, semiconducting single-walled carbon nanotubes (CNTs) from a heterogeneous as-synthesized mixture is essential for various semiconducting technologies and biomedical applications. Although conjugated polymer wrappers are often utilized to facilitate electronic-type sorting, it is highly desirable to remove organic residues from the resulting devices. We report here the design and synthesis of a mild acid-degradable π-conjugated polyimine polymer, poly[(9,9-di-n-octyl-2,7-fluoren-dinitrilomethine)-alt-co-(6,6'-{2,2'-bipyridyl-dimethine})] (PFO-N-BPy), that is structurally analogous to the commonly used and commercially available poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6'-(2,2'-bipyridine))] (PFO-BPy). An acid cleavable imine link (-HC═N-) was introduced in the PFO-N-BPy backbone to impart degradability, which is absent in PFO-BPy. PFO-N-BPy was synthesized via a metal catalyst-free aza-Wittig reaction in high yields. PFO-N-BPy with a degree of polymerization of just ∼10 showed excellent (>99% electronic purity) selectivity for both large-diameter (1.3-1.7 nm) arc-discharge semiconducting CNTs (S-CNTs) and smaller diameter (0.8-1.2 nm) high-pressure carbon monoxide disproportionation reaction S-CNTs. Overall, the selectivity for the semiconducting species is similar to that of PFO-BPy but with an advantage of complete depolymerization under mild acidic conditions into recyclable monomers. We further show by ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy that the PFO-N-BPy-wrapped S-CNTs can be aligned into a monolayer array on gate dielectrics using a floating evaporative self-assembly process from which the polymer can be completely removed. Short channel field effect transistors were fabricated from the polymer-stripped aligned S-CNT arrays, which further confirmed the semiconducting purity on the order of 99.9% or higher.

3.
ACS Appl Mater Interfaces ; 9(34): 28859-28867, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28758721

RESUMEN

Conjugated polymers are used commonly to selectively sort semiconducting carbon nanotubes (S-CNTs) from their metallic counterparts in organic solvents. The polymer-wrapped S-CNTs can be easily processed from organic solvents into arrays of CNTs for scalable device fabrication. Though the conjugated polymers are essential for sorting and device fabrication, it is highly desirable to remove them completely as they limit the electronic properties of the device. Here, we use a commercially available polymer, namely, poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6'-(2,2'-bipyridine))] (PFO-BPy), to sort large-diameter S-CNTs with ultrahigh selectivity and fabricate CNT-array-based field effect transistors (FETs) via a floating evaporative self-assembly (FESA) process. We report quantitative removal of the polymer wrapper from the FESA aligned S-CNT arrays using a metal-chelation-assisted polymer removal (McAPR) process. The implementation of this process on FESA films requires the selective thermal degradation of the polymer into oligomers, combined with optimization of the solvent type and temperature of the metal complexation reaction. Resulting S-CNT array FET devices show that the electronic properties of pristine CNT are preserved through this process. Optical microscopy, UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to characterize the quantitative polymer removal. We quantitatively describe the FET devices to analyze the fundamental characteristics of FETs (mobility (µ), on-conductance (Gon), and contact resistance (2Rc)) by comparing before and after polymer removal. The ability to completely remove the polymer wrapper in aligned CNT arrays without adversely affecting the device properties opens up applications beyond FETs into photovoltaics and biosensing.

4.
Sci Adv ; 2(9): e1601240, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27617293

RESUMEN

Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G 0 = 4e (2)/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G 0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs µm(-1), fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G 0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS µm(-1), which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 µA µm(-1) and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies.


Asunto(s)
Nanotecnología , Nanotubos de Carbono/química , Semiconductores , Silicio/química , Arsenicales/química , Carbono/química , Galio/química , Tamaño de la Partícula , Propiedades de Superficie , Transistores Electrónicos
5.
ACS Nano ; 10(7): 6782-90, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27327074

RESUMEN

In this paper, we report record radio frequency (RF) performance of carbon nanotube transistors based on combined use of a self-aligned T-shape gate structure, and well-aligned, high-semiconducting-purity, high-density polyfluorene-sorted semiconducting carbon nanotubes, which were deposited using dose-controlled, floating evaporative self-assembly method. These transistors show outstanding direct current (DC) performance with on-current density of 350 µA/µm, transconductance as high as 310 µS/µm, and superior current saturation with normalized output resistance greater than 100 kΩ·µm. These transistors create a record as carbon nanotube RF transistors that demonstrate both the current-gain cutoff frequency (ft) and the maximum oscillation frequency (fmax) greater than 70 GHz. Furthermore, these transistors exhibit good linearity performance with 1 dB gain compression point (P1dB) of 14 dBm and input third-order intercept point (IIP3) of 22 dBm. Our study advances state-of-the-art of carbon nanotube RF electronics, which have the potential to be made flexible and may find broad applications for signal amplification, wireless communication, and wearable/flexible electronics.

6.
ACS Nano ; 9(10): 10203-13, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26348205

RESUMEN

Conjugated polymers are among the most selective carbon nanotube sorting agents discovered and enable the isolation of ultrahigh purity semiconducting singled-walled carbon nanotubes (s-SWCNTs) from heterogeneous mixtures that contain problematic metallic nanotubes. The strong selectivity though highly desirable for sorting, also leads to irreversible adsorption of the polymer on the s-SWCNTs, limiting their electronic and optoelectronic properties. We demonstrate how changes in polymer backbone rigidity can trigger its release from the nanotube surface. To do so, we choose a model polymer, namely poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,60-(2,20-bipyridine))] (PFO-BPy), which provides ultrahigh selectivity for s-SWCNTs, which are useful specifically for FETs, and has the chemical functionality (BPy) to alter the rigidity using mild chemistry. Upon addition of Re(CO)5Cl to the solution of PFO-BPy wrapped s-SWCNTs, selective chelation with the BPy unit in the copolymer leads to the unwrapping of PFO-BPy. UV-vis, XPS, and Raman spectroscopy studies show that binding of the metal ligand complex to BPy triggers up to 85% removal of the PFO-BPy from arc-discharge s-SWCNTs (diameter = 1.3-1.7 nm) and up to 72% from CoMoCAT s-SWCNTs (diameter = 0.7-0.8 nm). Importantly, Raman studies show that the electronic structure of the s-SWCNTs is preserved through this process. The generalizability of this method is demonstrated with two other transition metal salts. Molecular dynamics simulations support our experimental findings that the complexation of BPy with Re(CO)5Cl in the PFO-BPy backbone induces a dramatic conformational change that leads to a dynamic unwrapping of the polymer off the nanotube yielding pristine s-SWCNTs.

7.
Nat Commun ; 6: 8006, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26258594

RESUMEN

Graphene can be transformed from a semimetal into a semiconductor if it is confined into nanoribbons narrower than 10 nm with controlled crystallographic orientation and well-defined armchair edges. However, the scalable synthesis of nanoribbons with this precision directly on insulating or semiconducting substrates has not been possible. Here we demonstrate the synthesis of graphene nanoribbons on Ge(001) via chemical vapour deposition. The nanoribbons are self-aligning 3° from the Ge〈110〉 directions, are self-defining with predominantly smooth armchair edges, and have tunable width to <10 nm and aspect ratio to >70. In order to realize highly anisotropic ribbons, it is critical to operate in a regime in which the growth rate in the width direction is especially slow, <5 nm h(-1). This directional and anisotropic growth enables nanoribbon fabrication directly on conventional semiconductor wafer platforms and, therefore, promises to allow the integration of nanoribbons into future hybrid integrated circuits.

8.
ACS Nano ; 8(11): 11614-21, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25383880

RESUMEN

Challenges in eliminating metallic from semiconducting single-walled carbon nanotubes (SWCNTs) and in controlling their alignment have limited the development of high-performance SWCNT-based field-effect transistors (FETs). We recently pioneered an approach for depositing aligned arrays of ultra-high-purity semiconducting SWCNTs, isolated using polyfluorene derivatives, called dose-controlled floating evaporative self-assembly. Here, we tailor FETs fabricated from these arrays to achieve on-conductance (G(on)) per width and an on-off ratio (G(on)/G(off)) of 261 µS/µm and 2 × 10(5), respectively, for a channel length (L(ch)) of 240 nm and 116 µS/µm and 1 × 10(6), respectively, for an L(ch) of 1 µm. We demonstrate 1400× greater G(on)/G(off) than SWCNT FETs fabricated by other methods, at comparable G(on) per width of ∼250 µS/µm and 30-100× greater G(on) per width at comparable G(on)/G(off) of 10(5)-10(7). The average G(on) per tube reaches 5.7 ± 1.4 µS at a packing density of 35 tubes/µm for L(ch) in the range 160-240 nm, limited by contact resistance. These gains highlight the promise of using ultra-high-purity semiconducting SWCNTs with controlled alignment for next-generation semiconductor electronics.

9.
Langmuir ; 30(12): 3460-6, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24580418

RESUMEN

Arrays of aligned semiconducting single-walled carbon nanotubes (s-SWCNTs) with exceptional electronic-type purity were deposited at high deposition velocity of 5 mm min(-1) by a novel "dose-controlled, floating evaporative self-assembly" process with excellent control over the placement of stripes and quantity of s-SWCNTs deposited. This approach uses the diffusion of organic solvent on the water-air interface to deposit aligned s-SWCNT (99.9%) tubes on a partially submerged hydrophobic substrate, which is withdrawn vertically from the surface of water. By decoupling the s-SWCNT stripe formation from the evaporation of the bulk solution and by iteratively applying the s-SWCNTs in controlled "doses", we show through polarized Raman studies that the s-SWCNTs are aligned within ±14°, are packed at a density of ∼50 s-SWCNTs µm(-1), and constitute primarily a well-ordered monodispersed layer. The resulting field-effect transistor devices show high performance with a mobility of 38 cm(2) V(-1) s(-1) and on/off ratio of 2.2 × 10(6) at 9 µm channel length.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...