Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
Front Pharmacol ; 15: 1405446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887549

RESUMEN

Alcohol misuse is the third leading preventable cause of death in the world. The World Health Organization currently estimates that 1 in 20 deaths are directly alcohol related. One of the ways in which consuming excessive levels of alcohol can both directly and indirectly affect human mortality and morbidity, is through chronic inflammation. Recently, studies have suggested a link between increased alcohol use and the incidence of neuroinflammatory-related diseases. However, the mechanism in which alcohol potentially influences neuroinflammatory processes is still being uncovered. We implemented an unbiased proteomics exploration of alcohol-induced changes in the striatum, with a specific emphasis on proteins related to inflammation. The striatum is a brain region that is critically involved with the progression of alcohol use disorder. Using mass spectrometry following voluntary alcohol self-administration in mice, we show that distinct protein abundances and signaling pathways in different subregions of the striatum are disrupted by chronic exposure to alcohol compared to water drinking control mice. Further, in mice that were allowed to experience abstinence from alcohol compared to mice that were non-abstinent, the overall proteome and signaling pathways showed additional differences, suggesting that the responses evoked by chronic alcohol exposure are dependent on alcohol use history. To our surprise we did not find that chronic alcohol drinking or abstinence altered protein abundance or pathways associated with inflammation, but rather affected proteins and pathways associated with neurodegeneration and metabolic, cellular organization, protein translation, and molecular transport processes. These outcomes suggest that in this drinking model, alcohol-induced neuroinflammation in the striatum is not a primary outcome controlling altered neurobehavioral function, but these changes are rather mediated by altered striatal neuronal structure and cellular health.

2.
Alcohol ; 119: 89-95, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857678

RESUMEN

Many drugs of abuse, including alcohol, disrupt long-term synaptic depression (LTD) at dorsal striatal glutamate synapses. This disruption is common to many forms of LTD that are mediated by G protein coupled receptors (GPCRs) that signal through the inhibitory Gi/o class of G proteins. A loss of LTD is thought to mediate behavioral changes associated with the development of substance use disorders. We have previously shown in multiple studies that LTD mediated by the Gi/o-coupled mu opioid receptor is disrupted by in vivo opioid and alcohol exposure in adolescent and adult mice. One of our previous studies suggested that LTD mediated by delta and kappa opioid receptors was resistant to the LTD-disrupting properties of in vivo opioid exposure. We hypothesized that delta and kappa opioid receptor-mediated LTD would be exceptions to the generalizable observation that forms of dorsal striatal Gi/o-coupled receptor LTD are disrupted by drugs of abuse. Specifically, we predicted that these forms of LTD would be resistant to the deleterious effects of alcohol consumption, just as they were resistant to opioid exposure. Indeed, in adult male mice that drank alcohol for 3 weeks, delta and kappa opioid receptor-mediated LTD at glutamatergic inputs to direct pathway and indirect pathway medium spiny neurons in the dorsolateral striatum was unaffected by alcohol. These data demonstrate that alcohol effects on GPCR-mediated LTD are not generalizable across all types of Gi/o-coupled GPCRs.

3.
Calcif Tissue Int ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856730

RESUMEN

Patients with chronic kidney disease (CKD) report high pain levels, but reduced renal clearance eliminates many analgesic options; therefore, 30-50% of CKD patients have chronic opioid prescriptions. Opioid use in CKD is associated with higher fracture rates. Opioids may directly alter bone turnover directly through effects on bone cells and indirectly via increasing inflammation. We hypothesized that continuous opioid exposure would exacerbate the high bone turnover state of CKD and be associated with elevated measures of inflammation. Male C57Bl/6J mice after 8 weeks of adenine-induced CKD (AD) and non-AD controls (CON) had 14-day osmotic pumps (0.25-µL/hr release) containing either saline or 50-mg/mL oxycodone (OXY) surgically implanted in the subscapular region. After 2 weeks, all AD mice had elevated blood urea nitrogen, parathyroid hormone, and serum markers of bone turnover compared to controls with no effect of OXY. Immunohistochemical staining of the distal femur showed increased numbers of osteocytes positive for the mu opioid and for toll-like receptor 4 (TLR4) due to OXY. Osteocyte protein expression of tumor necrosis factor-α (TNF-α) and RANKL were higher due to both AD and OXY so that AD + OXY mice had the highest values. Trabecular osteoclast-covered surfaces were also significantly higher due to both AD and OXY, resulting in AD + OXY mice having 4.5-fold higher osteoclast-covered surfaces than untreated CON. These data demonstrate that opioids are associated with a pro-inflammatory state in osteocytes which increases the pro-resorptive state of CKD.

4.
J Neurosci ; 44(16)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38453466

RESUMEN

Chronic pain and alcohol use disorder (AUD) are highly comorbid, and patients with chronic pain are more likely to meet the criteria for AUD. Evidence suggests that both conditions alter similar brain pathways, yet this relationship remains poorly understood. Prior work shows that the anterior insular cortex (AIC) is involved in both chronic pain and AUD. However, circuit-specific changes elicited by the combination of pain and alcohol use remain understudied. The goal of this work was to elucidate the converging effects of binge alcohol consumption and chronic pain on AIC neurons that send projections to the dorsolateral striatum (DLS). Here, we used the Drinking-in-the-Dark (DID) paradigm to model binge-like alcohol drinking in mice that underwent spared nerve injury (SNI), after which whole-cell patch-clamp electrophysiological recordings were performed in acute brain slices to measure intrinsic and synaptic properties of AIC→DLS neurons. In male, but not female, mice, we found that SNI mice with no prior alcohol exposure consumed less alcohol compared with sham mice. Electrophysiological analyses showed that AIC→DLS neurons from SNI-alcohol male mice displayed increased neuronal excitability and increased frequency of miniature excitatory postsynaptic currents. However, mice exposed to alcohol prior to SNI consumed similar amounts of alcohol compared with sham mice following SNI. Together, our data suggest that the interaction of chronic pain and alcohol drinking have a direct effect on both intrinsic excitability and synaptic transmission onto AIC→DLS neurons in mice, which may be critical in understanding how chronic pain alters motivated behaviors associated with alcohol.


Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Dolor Crónico , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratones , Animales , Masculino , Dolor Crónico/metabolismo , Corteza Insular , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Etanol/farmacología , Neuronas/metabolismo , Alcoholismo/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo
5.
Radiographics ; 44(4): e230163, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512730

RESUMEN

The differential diagnosis for heel pain is broad but primarily involves abnormalities of the Achilles tendon, calcaneus, and plantar fascia. Achilles tendon disorders include tendinosis, tendinitis, and partial or complete tears. Tendinosis refers to tendon degeneration, while tendinitis is inflammation after acute overload. Untreated tendinosis can progress to partial or complete tears. Tendon disorders can be accompanied by paratenonitis or inflammation of the loose sheath enclosing the tendon. Initial management involves rehabilitation and image-guided procedures. Operative management is reserved for tendon tears and includes direct repair, tendon transfer, and graft reconstruction. The calcaneus is the most commonly fractured tarsal bone. The majority of fractures are intra-articular; extra-articular fractures, stress or insufficiency fractures, medial process avulsion, and neuropathic avulsion can also occur. Posterosuperior calcaneal exostosis or Haglund deformity, retrocalcaneal bursitis, and insertional Achilles tendinosis form the characteristic triad of Haglund syndrome. It is initially managed with orthotics and physiotherapy. Operative management aims to correct osseous or soft-tissue derangements. The plantar fascia is a strong fibrous tissue that invests the sole of the foot and contributes to midfoot stability. Inflammation or plantar fasciitis is the most common cause of heel pain and can be related to overuse or mechanical causes. Acute rupture is less common but can occur in preexisting plantar fasciitis. Conservative treatment includes footwear modification, calf stretches, and percutaneous procedures. The main operative treatment is plantar fasciotomy. Plantar fibromatosis is a benign fibroblastic proliferation within the fascia that can be locally aggressive and is prone to recurrence. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Asunto(s)
Fascitis Plantar , Fracturas por Estrés , Tendinopatía , Humanos , Talón/diagnóstico por imagen , Fascitis Plantar/complicaciones , Tendinopatía/diagnóstico por imagen , Tendinopatía/terapia , Dolor/etiología , Inflamación
6.
Eur J Orthop Surg Traumatol ; 34(1): 237-242, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37433971

RESUMEN

PURPOSE: Pilon fractures are often complex injuries involving severe soft tissue injury. Studies have shown pilon fractures may entrap soft tissue structures between fracture fragments. Staged fixation of pilon fractures with spanning external fixation (SEF) is important for soft tissue rest and plays an important role in the management of these injuries. While SEF has been shown to promote soft tissue rest prior to definitive fixation, no studies have shown the effect SEF has on entrapped structures (ES). The purpose of this study was to evaluate how SEF effects ES in pilon fractures. METHODS: A retrospective review of 212 pilon fractures treated at our institution between 2010 and 2022 was performed. Patients with a CT scan pre-SEF and post-SEF met inclusion criteria. CTs were reviewed to characterize ES in pre- and post-SEF imaging. RESULTS: Of the 19 patients with ES identified on CT pre-SEF, seven (36.8%) had full release of ES post-SEF and 12 (63.2%) had no release of ES. The posterior tibial tendon was the most commonly ES and remained entrapped in 62.5% of cases. Only 25% of 43-C3 fractures had release of ES post-SEF, while 100% of 43-C1 and 43-C2 fractures demonstrated complete release of ES post-SEF. CONCLUSION: Entrapped structures in pilon fractures are likely to remain entrapped post-SEF, with only one-third of our cohort demonstrating release. In 43-C3 patterns, if ES are identified on CT pre-SEF, surgeons should consider addressing these either through mini open versus open approaches at the time of SEF as they are likely to remain entrapped post-SEF.


Asunto(s)
Fracturas de Tobillo , Traumatismos del Tobillo , Fracturas de la Tibia , Humanos , Fijación Interna de Fracturas , Fijación de Fractura , Fijadores Externos , Resultado del Tratamiento , Traumatismos del Tobillo/cirugía , Fracturas de la Tibia/diagnóstico por imagen , Fracturas de la Tibia/cirugía , Fracturas de Tobillo/diagnóstico por imagen , Fracturas de Tobillo/cirugía , Estudios Retrospectivos
7.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-37662373

RESUMEN

How does alcohol consumption alter synaptic transmission across time, and do these alcohol-induced neuroadaptations occur similarly in both male and female mice? Previous work shows that anterior insular cortex (AIC) projections to the dorsolateral striatum (DLS) are uniquely sensitive to alcohol-induced neuroadaptations in male, but not female mice, and play a role in governing binge alcohol consumption in male mice. Here, by using high-resolution behavior data paired with in-vivo fiber photometry, we show how similar levels of alcohol intake are achieved via different behavioral strategies across sex, and how inter-drinking session thirst states predict future alcohol intakes in females, but not males. Further, we show how presynaptic calcium activity recorded from AIC synaptic inputs in the DLS across 3 weeks of water consumption followed by 3 weeks of binge alcohol consumption change across, fluid, time, sex, and brain circuit lateralization. By time-locking presynaptic calcium activity from AIC inputs to the DLS to peri-initiation of drinking events we also show that AIC inputs into the left DLS robustly encode binge alcohol intake behaviors relative to water consumption and AIC inputs into the right DLS in males, but not females. These findings suggest a fluid-, sex- and lateralization-dependent role for the engagement of AIC inputs into the DLS that encode binge alcohol consumption behaviors and further contextualize alcohol-induced neuroadaptations at AIC inputs to the DLS.

8.
Diabetologia ; 67(1): 170-189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712955

RESUMEN

AIMS/HYPOTHESIS: The brain is a major consumer of glucose as an energy source and regulates systemic glucose as well as energy balance. Although glucose transporters such as GLUT2 and sodium-glucose cotransporter 2 (SGLT2) are known to regulate glucose homeostasis and metabolism, the identity of a receptor that binds glucose to activate glucose signalling pathways in the brain is unknown. In this study, we aimed to discover a glucose receptor in the mouse hypothalamus. METHODS: Here we used a high molecular mass glucose-biotin polymer to enrich glucose-bound mouse hypothalamic neurons through cell-based affinity chromatography. We then subjected the enriched neurons to proteomic analyses and identified adhesion G-protein coupled receptor 1 (ADGRL1) as a top candidate for a glucose receptor. We validated glucose-ADGRL1 interactions using CHO cells stably expressing human ADGRL1 and ligand-receptor binding assays. We generated and determined the phenotype of global Adgrl1-knockout mice and hypothalamus-specific Adgrl1-deficient mice. We measured the variables related to glucose and energy homeostasis in these mice. We also generated an Adgrl1Cre mouse model to investigate the role of ADGRL1 in sensing glucose using electrophysiology. RESULTS: Adgrl1 is highly expressed in the ventromedial nucleus of the hypothalamus (VMH) in mice. Lack of Adgrl1 in the VMH in mice caused fasting hyperinsulinaemia, enhanced glucose-stimulated insulin secretion and insulin resistance. In addition, the Adgrl1-deficient mice had impaired feeding responses to glucose and fasting coupled with abnormal glucose sensing and decreased physical activity before development of obesity and hyperglycaemia. In female mice, ovariectomy was necessary to reveal the contribution of ADGRL1 to energy and glucose homeostasis. CONCLUSIONS/INTERPRETATION: Altogether, our findings demonstrate that ADGRL1 binds glucose and is involved in energy as well as glucose homeostasis in a sex-dependent manner. Targeting ADGRL1 may introduce a new class of drugs for the treatment of type 2 diabetes and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Cricetinae , Femenino , Humanos , Ratones , Cricetulus , Diabetes Mellitus Tipo 2/complicaciones , Metabolismo Energético/genética , Glucosa/metabolismo , Homeostasis/fisiología , Ratones Noqueados , Obesidad/metabolismo , Proteómica
9.
Radiographics ; 43(12): e230094, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37917538

RESUMEN

Overhead throwing, particularly in baseball, subjects the shoulder and elbow to various unique injuries. Capsular contracture following repetitive external rotation shifts the humeral head posterosuperiorly, predisposing to glenohumeral internal rotation deficit (GIRD), Bennett, posterosuperior internal impingement (PSI), and superior labrum anterior-posterior (SLAP) lesions. GIRD represents loss of internal rotation at the expense of external rotation. Bennett lesion represents ossification of the posteroinferior glenohumeral ligament due to repetitive traction. PSI manifests with humeral head cysts and "kissing" tears of the posterosuperior cuff and labrum. Scapular dysfunction contributes to symptoms of PSI and predisposes to labral or rotator cuff disease. "Peel-back" or SLAP lesions occur when torsional forces detach the biceps-labral anchor from the glenoid. Finally, disorders of the anterior capsule, latissimus dorsi, teres major, and subscapularis are well recognized in overhead throwers. At the elbow, injuries typically involve the medial-sided structures. The ulnar collateral ligament (UCL) is the primary static restraint to valgus stress and can be thickened, attenuated, ossified, and/or partially or completely torn. Medial epicondylitis can occur with tendinosis, partial tear, or complete rupture of the flexor-pronator mass and can accompany UCL tears and ulnar neuropathy. Posteromedial impingement (PMI) and valgus extension overload syndrome are related entities that follow abundant valgus forces during late cocking or acceleration, and deceleration. These valgus stresses wedge the olecranon into the olecranon fossa, leading to PMI, osteophytes, and intra-articular bodies. Other osseous manifestations include olecranon stress fracture and cortical thickening of the humeral shaft. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.


Asunto(s)
Traumatismos en Atletas , Lesiones de Codo , Lesiones del Manguito de los Rotadores , Lesiones del Hombro , Articulación del Hombro , Humanos , Adulto , Hombro , Manguito de los Rotadores , Escápula , Lesiones del Hombro/diagnóstico por imagen , Traumatismos en Atletas/diagnóstico por imagen
10.
Immunity ; 56(9): 2121-2136.e6, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37659412

RESUMEN

Genetic association studies have demonstrated the critical involvement of the microglial immune response in Alzheimer's disease (AD) pathogenesis. Phospholipase C-gamma-2 (PLCG2) is selectively expressed by microglia and functions in many immune receptor signaling pathways. In AD, PLCG2 is induced uniquely in plaque-associated microglia. A genetic variant of PLCG2, PLCG2P522R, is a mild hypermorph that attenuates AD risk. Here, we identified a loss-of-function PLCG2 variant, PLCG2M28L, that confers an increased AD risk. PLCG2P522R attenuated disease in an amyloidogenic murine AD model, whereas PLCG2M28L exacerbated the plaque burden associated with altered phagocytosis and Aß clearance. The variants bidirectionally modulated disease pathology by inducing distinct transcriptional programs that identified microglial subpopulations associated with protective or detrimental phenotypes. These findings identify PLCG2M28L as a potential AD risk variant and demonstrate that PLCG2 variants can differentially orchestrate microglial responses in AD pathogenesis that can be therapeutically targeted.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Estudios de Asociación Genética , Microglía , Fagocitosis/genética , Fenotipo , Placa Amiloide , Fosfolipasa C gamma/metabolismo
11.
Neuropharmacology ; 240: 109696, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659438

RESUMEN

Corticostriatal circuits are generally characterized by the release of glutamate neurotransmitter from cortical terminals within the striatum. It is well known that cortical excitatory input to the dorsal striatum regulates addictive drug-related behaviors. We previously reported that anterior insular cortex (AIC) synaptic inputs to the dorsolateral striatum (DLS) control binge alcohol drinking in mice. These AIC-DLS glutamate synapses are also the sole sites of corticostriatal mu opioid receptor-mediated excitatory long-term depression (MOR-LTD) in the DLS. Recent work demonstrates that some regions of cortex send long-range, direct inhibitory inputs into the dorsal striatum. Nothing is known about the existence and regulation of AIC-DLS inhibitory synaptic transmission. Here, using a combination of patch clamp electrophysiology and optogenetics, we characterized a novel AIC-DLS corticostriatal inhibitory circuit and its regulation by MOR-mediated inhibitory LTD (MOR-iLTD). First, we found that the activation of presynaptic MORs produces MOR-iLTD in the DLS and dorsomedial striatum. Then, we showed that medium spiny neurons within the DLS receive direct inhibitory synaptic input from the cortex, specifically from the motor cortex and AIC. Using transgenic mice that express cre-recombinase within parvalbumin-expressing inhibitory neurons, we determined that this specific cortical neuron subtype sends direct GABAergic projections to the DLS. Moreover, these AIC-DLS inhibitory synaptic input subtypes express MOR-iLTD. These data suggest a novel GABAergic corticostriatal circuit that could be involved in the regulation of drug and alcohol consumption-related behaviors.


Asunto(s)
Plasticidad Neuronal , Receptores Opioides mu , Ratones , Animales , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Cuerpo Estriado/metabolismo , Ratones Transgénicos , Glutamatos
12.
Hum Reprod ; 38(10): 1991-1997, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37632248

RESUMEN

STUDY QUESTION: How does the number of children in women with primary ovarian insufficiency (POI) compare to the number for control women across their reproductive lifespans? SUMMARY ANSWER: Approximately 14% fewer women with POI will have children, but for those able to have children the median number is 1 less than for age-matched controls. WHAT IS KNOWN ALREADY: Women with POI are often identified when presenting for fertility treatment, but some women with POI already have children and there remains a low chance for pregnancy after the diagnosis. Further, POI is heritable, but it is not known whether relatives of women with POI have a smaller family size than relatives of controls. STUDY DESIGN, SIZE, DURATION: The study was a retrospective case-control study of women with POI diagnosed from 1995 to 2021 (n = 393) and age-matched controls (n = 393). PARTICIPANTS/MATERIALS, SETTING, METHODS: Women with POI were identified using ICD9 and 10 codes in electronic medical records (1995-2021) from two major healthcare systems in Utah and reviewed for accuracy. Cases were linked to genealogy information in the Utah Population Database. All POI cases (n = 393) were required to have genealogy information available for at least three generations of ancestors. Two sets of female controls were identified: one matched for birthplace (Utah or elsewhere) and 5-year birth cohort, and a second also matched for fertility status (children present). The number of children born and maternal age at each birth were ascertained by birth certificates (available from 1915 to 2020) for probands, controls, and their relatives. The Mann-Whitney U test was used for comparisons. A subset analysis was performed on women with POI and controls who delivered at least one child and on women who reached 45 years to capture reproductive lifespan. MAIN RESULTS AND THE ROLE OF CHANCE: Of the 393 women with POI and controls, 211 women with POI (53.7%), and 266 controls (67.7%) had at least one child. There were fewer children born to women with POI versus controls (median (interquartile range) 1 (0-2) versus 2 (0-3); P = 3.33 × 10-6). There were no children born to women with POI and primary amenorrhea or those <25 years old before their diagnosis. When analyzing women with at least one child, women with POI had fewer children compared to controls overall (2 (1-3) versus 2 (2-4); P = 0.017) and when analyzing women who reached 45 years old (2 (1-3) versus 3 (2-4); P = 0.0073). Excluding known donor oocyte pregnancies, 7.1% of women with POI had children born after their diagnosis. There were no differences in the number of children born to relatives of women with POI, including those with familial POI. LIMITATIONS, REASONS FOR CAUTION: The data are limited based on inability to determine whether women were trying for pregnancy throughout their reproductive lifespan or were using contraception. Unassisted births after the diagnosis of POI may be slightly over-estimated based on incomplete data regarding use of donor oocytes. The results may not be generalizable to countries or states with late first births or lower birth rates. WIDER IMPLICATIONS OF THE FINDINGS: Approximately half of women with POI will bear children before diagnosis. Although women with POI had fewer children than age matched controls, the difference in number of children is one child per woman. The data suggest that fertility may not be compromised leading up to the diagnosis of POI for women diagnosed at 25 years or later and with secondary amenorrhea. However, the rate of pregnancy after the diagnosis is low and we confirm a birth rate of <10%. The smaller number of children did not extend to relatives when examined as a group, suggesting that it may be difficult to predict POI based on family history. STUDY FUNDING/COMPETING INTEREST(S): The work in this publication was supported by R56HD090159 and R01HD099487 (C.K.W.). We also acknowledge partial support for the Utah Population Database through grant P30 CA2014 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Amenorrea , Insuficiencia Ovárica Primaria , Embarazo , Femenino , Humanos , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Estudios de Casos y Controles , Composición Familiar
13.
PLoS One ; 18(7): e0282756, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37471385

RESUMEN

Methadone-based treatment for pregnant women with opioid use disorder is quite prevalent in the clinical environment. A number of clinical and animal model-based studies have reported cognitive deficits in infants prenatally exposed to methadone-based opioid treatments. However, the long-term impact of prenatal opioid exposure (POE) on pathophysiological mechanisms that govern neurodevelopmental impairment is not well understood. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of this study is to investigate the role of cerebral biochemistry and its possible association with regional microstructural organization in PME offspring. To understand these effects, 8-week-old male offspring with PME (n = 7) and prenatal saline exposure (PSE) (n = 7) were scanned in vivo on 9.4 Tesla small animal scanner. Single voxel proton magnetic resonance spectroscopy (1H-MRS) was performed in the right dorsal striatum (RDS) region using a short echo time (TE) Stimulated Echo Acquisition Method (STEAM) sequence. Neurometabolite spectra from the RDS was first corrected for tissue T1 relaxation and then absolute quantification was performed using the unsuppressed water spectra. High-resolution in vivo diffusion MRI (dMRI) for region of interest (ROI) based microstructural quantification was also performed using a multi-shell dMRI sequence. Cerebral microstructure was characterized using diffusion tensor imaging (DTI) and Bingham-neurite orientation dispersion and density imaging (Bingham-NODDI). MRS results in the RDS showed significant decrease in N-acetyl aspartate (NAA), taurine (tau), glutathione (GSH), total creatine (tCr) and glutamate (Glu) concentration levels in PME, compared to PSE group. In the same RDS region, mean orientation dispersion index (ODI) and intracellular volume fraction (VFIC) demonstrated positive associations with tCr in PME group. ODI also exhibited significant positive association with Glu levels in PME offspring. Significant reduction in major neurotransmitter metabolites and energy metabolism along with strong association between the neurometabolites and perturbed regional microstructural complexity suggest a possible impaired neuroadaptation trajectory in PME offspring which could be persistent even into late adolescence and early adulthood.


Asunto(s)
Analgésicos Opioides , Imagen de Difusión Tensora , Embarazo , Ratones , Animales , Masculino , Humanos , Femenino , Imagen de Difusión Tensora/métodos , Analgésicos Opioides/metabolismo , Neuritas/metabolismo , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Metadona , Espectroscopía de Resonancia Magnética , Receptores de Antígenos de Linfocitos T/metabolismo , Encéfalo/metabolismo
14.
Hand (N Y) ; 18(7): NP1-NP4, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37489114

RESUMEN

Flexor tendon entrapments as a result of fractures or dislocations in the upper extremity are rare. Diagnosis by clinical examination is not always possible, and imaging such as magnetic resonance imaging and ultrasound is often obtained. These modalities have the disadvantages of reduced sensitivity or increased cost and time, respectively. We present a unique case of a triquetral fracture and pisiform dislocation causing index finger flexor digitorum profundus (FDP-I) entrapment that was diagnosed preoperatively with computed tomography (CT) imaging with 3-dimensional (3D) volume rendering. A 30-year-old man presented in delayed fashion 4 weeks after a dune buggy accident. Among other injuries noted on examination, his index finger was held in flexion and unable to be passively extended. The CT source images showed dislocation and interposition of the FDP-I tendon within a fracture-dislocation of the triquetrum and pisiform. Postprocessed 3D volume renderings obtained from the CT source images confirmed this finding. The patient underwent operative intervention, where FDP-I entrapment between the triquetral fracture fragments and the dislocated pisiform was confirmed and released. Practitioners should be aware of this injury pattern and evolving advanced CT techniques which may be used to aid in soft-tissue diagnoses and obviate the need for additional advanced imaging.


Asunto(s)
Fractura-Luxación , Fracturas Óseas , Luxaciones Articulares , Trastorno del Dedo en Gatillo , Masculino , Humanos , Adulto , Fracturas Óseas/cirugía , Fractura-Luxación/cirugía , Tendones/diagnóstico por imagen , Tendones/cirugía , Tomografía Computarizada por Rayos X
16.
J Dairy Sci ; 106(7): 4559-4579, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37173256

RESUMEN

Feeding supplemental choline and Met during the periparturient period can have positive effects on cow performance; however, the mechanisms by which these nutrients affect performance and metabolism are unclear. The objective of this experiment was to determine if providing rumen-protected choline, rumen-protected Met, or both during the periparturient period modifies the choline metabolitic profile of plasma and milk, plasma AA, and hepatic mRNA expression of genes associated with choline, Met, and lipid metabolism. Cows (25 primiparous, 29 multiparous) were blocked by expected calving date and parity and randomly assigned to 1 of 4 treatments: control (no rumen-protected choline or rumen-protected Met); CHO (13 g/d choline ion); MET (9 g/d DL-methionine prepartum; 13.5 g/d DL-methionine, postpartum); or CHO + MET. Treatments were applied daily as a top dress from ∼21 d prepartum through 35 d in milk (DIM). On the day of treatment enrollment (d -19 ± 2 relative to calving), blood samples were collected for covariate measurements. At 7 and 14 DIM, samples of blood and milk were collected for analysis of choline metabolites, including 16 species of phosphatidylcholine (PC) and 4 species of lysophosphatidylcholine (LPC). Blood was also analyzed for AA concentrations. Liver samples collected from multiparous cows on the day of treatment enrollment and at 7 DIM were used for gene expression analysis. There was no consistent effect of CHO or MET on milk or plasma free choline, betaine, sphingomyelin, or glycerophosphocholine. However, CHO increased milk secretion of total LPC irrespective of MET for multiparous cows and in absence of MET for primiparous cows. Furthermore, CHO increased or tended to increase milk secretion of LPC 16:0, LPC 18:1, and LPC 18:0 for primi- and multiparous cows, although the response varied with MET supplementation. Feeding CHO also increased plasma concentrations of LPC 16:0 and LPC 18:1 in absence of MET for multiparous cows. Although milk secretion of total PC was unaffected, CHO and MET increased secretion of 6 and 5 individual PC species for multiparous cows, respectively. Plasma concentrations of total PC and individual PC species were unaffected by CHO or MET for multiparous cows, but MET reduced total PC and 11 PC species during wk 2 postpartum for primiparous cows. Feeding MET consistently increased plasma Met concentrations for both primi- and multiparous cows. Additionally, MET decreased plasma serine concentrations during wk 2 postpartum and increased plasma phenylalanine in absence of CHO for multiparous cows. In absence of MET, CHO tended to increase hepatic mRNA levels of betaine-homocysteine methyltransferase and phosphate cytidylyltransferase 1 choline, α, but tended to decrease expression of 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 and peroxisome proliferator activated receptor α irrespective of MET. Although shifts in the milk and plasma PC profile were subtle and inconsistent between primi- and multiparous cows, gene expression results suggest that supplemental choline plays a probable role in promoting the cytidine diphosphate-choline and betaine-homocysteine S-methyltransferase pathways. However, interactive effects suggest that this response depends on Met availability, which may explain the inconsistent results observed among studies when supplemental choline is fed.


Asunto(s)
Aminoácidos , Metionina , Embarazo , Femenino , Bovinos , Animales , Metionina/metabolismo , Aminoácidos/metabolismo , Colina/metabolismo , Suplementos Dietéticos/análisis , Dieta/veterinaria , Metabolismo de los Lípidos , Lactancia , Periodo Posparto/metabolismo , Leche/química , Racemetionina/metabolismo , Racemetionina/farmacología , Betaína/metabolismo , Hígado/metabolismo , Lecitinas
17.
Ann N Y Acad Sci ; 1524(1): 118-131, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37106579

RESUMEN

Egg geometry can be described using Preston's equation, which has seldom been used to calculate egg volume (V) and surface area (S) to explore S versus V scaling relationships. Herein, we provide an explicit re-expression of Preston's equation (designated as EPE) to calculate V and S, assuming that an egg is a solid of revolution. The side (longitudinal) profiles of 2221 eggs of six avian species were digitized, and the EPE was used to describe each egg profile. The volumes of 486 eggs from two avian species predicted by the EPE were compared with those obtained using water displacement in graduated cylinders. There was no significant difference in V using the two methods, which verified the utility of the EPE and the hypothesis that eggs are solids of revolution. The data also indicated that V is proportional to the product of egg length (L) and maximum width (W) squared. A 2/3-power scaling relationship between S and V for each species was observed, that is, S is proportional to (LW2 )2/3 . These results can be extended to describe the shapes of the eggs of other species to study the evolution of avian (and perhaps reptilian) eggs.


Asunto(s)
Aves , Huevos , Humanos , Animales , Matemática , Agua
18.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865153

RESUMEN

Methadone-based treatment for pregnant women with opioid use disorder is quite prevalent in the clinical environment. A number of clinical and animal model-based studies have reported cognitive deficits in infants prenatally exposed to methadone-based opioid treatments. However, the long-term impact of prenatal opioid exposure (POE) on pathophysiological mechanisms that govern neurodevelopmental impairment is not well understood. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of this study is to investigate the role of cerebral biochemistry and its possible association with regional microstructural organization in PME offspring. To understand these effects, 8- week-old male offspring with PME (n=7) and prenatal saline exposure (PSE) (n=7) were scanned in vivo on 9.4 Tesla small animal scanner. Single voxel proton magnetic resonance spectroscopy ( 1 H-MRS) was performed in the right dorsal striatum (RDS) region using a short echo time (TE) Stimulated Echo Acquisition Method (STEAM) sequence. Neurometabolite spectra from the RDS was first corrected for tissue T1 relaxation and then absolute quantification was performed using the unsuppressed water spectra. High-resolution in vivo diffusion MRI (dMRI) for region of interest (ROI) based microstructural quantification was also performed using a multi-shell dMRI sequence. Cerebral microstructure was characterized using diffusion tensor imaging (DTI) and Bingham-neurite orientation dispersion and density imaging (Bingham-NODDI). MRS results in the RDS showed significant decrease in N-acetyl aspartate (NAA), taurine (tau), glutathione (GSH), total creatine (tCr) and glutamate (Glu) concentration levels in PME, compared to PSE group. In the same RDS region, mean orientation dispersion index (ODI) and intracellular volume fraction (VF IC ) demonstrated positive associations with tCr in PME group. ODI also exhibited significant positive association with Glu levels in PME offspring. Significant reduction in major neurotransmitter metabolites and energy metabolism along with strong association between the neurometabolites and perturbed regional microstructural complexity suggest a possible impaired neuroadaptation trajectory in PME offspring which could be persistent even into late adolescence and early adulthood.

19.
Biol Psychiatry ; 93(11): 976-988, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822932

RESUMEN

BACKGROUND: Grooming dysfunction is a hallmark of the obsessive-compulsive spectrum disorder trichotillomania. Numerous preclinical studies have utilized SAPAP3-deficient mice for understanding the neurobiology of repetitive grooming, suggesting that excessive grooming is caused by increased metabotropic glutamate receptor 5 (mGluR5) activity in striatal direct- and indirect-pathway medium spiny neurons (MSNs). However, the MSN subtype-specific signaling mechanisms that mediate mGluR5-dependent adaptations underlying excessive grooming are not fully understood. Here, we investigated the MSN subtype-specific roles of the striatal signaling hub protein spinophilin in mediating repetitive motor dysfunction associated with mGluR5 function. METHODS: Quantitative proteomics and immunoblotting were utilized to identify how spinophilin impacts mGluR5 phosphorylation and protein interaction changes. Plasticity and repetitive motor dysfunction associated with mGluR5 action were measured using our novel conditional spinophilin mouse model in which spinophilin was knocked out from striatal direct-pathway MSNs and/or indirect-pathway MSNs. RESULTS: Loss of spinophilin only in indirect-pathway MSNs decreased performance of a novel motor repertoire, but loss of spinophilin in either MSN subtype abrogated striatal plasticity associated with mGluR5 function and prevented excessive grooming caused by SAPAP3 knockout mice or treatment with the mGluR5-specific positive allosteric modulator VU0360172 without impacting locomotion-relevant behavior. Biochemically, we determined that the spinophilin-mGluR5 interaction correlates with grooming behavior and that loss of spinophilin shifts mGluR5 interactions from lipid raft-associated proteins toward postsynaptic density proteins implicated in psychiatric disorders. CONCLUSIONS: These results identify spinophilin as a novel striatal signaling hub molecule in MSNs that cell subtype specifically mediates behavioral, functional, and molecular adaptations associated with repetitive motor dysfunction in psychiatric disorders.


Asunto(s)
Densidad Postsináptica , Receptor del Glutamato Metabotropico 5 , Animales , Ratones , Cuerpo Estriado/metabolismo , Aseo Animal/fisiología , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Densidad Postsináptica/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Transducción de Señal
20.
Genome Med ; 15(1): 11, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36805764

RESUMEN

BACKGROUND: TREM2 is a transmembrane receptor expressed by myeloid cells and acts to regulate their immune response. TREM2 governs the response of microglia to amyloid and tau pathologies in the Alzheimer's disease (AD) brain. TREM2 is also present in a soluble form (sTREM2), and its CSF levels fluctuate as a function of AD progression. Analysis of stroke and AD mouse models revealed that sTREM2 proteins bind to neurons, which suggests sTREM2 may act in a non-cell autonomous manner to influence neuronal function. sTREM2 arises from the proteolytic cleavage of the membrane-associated receptor. However, alternatively spliced TREM2 species lacking a transmembrane domain have been postulated to contribute to the pool of sTREM2. Thus, both the source of sTREM2 species and its actions in the brain remain unclear. METHODS: The expression of TREM2 isoforms in the AD brain was assessed through the analysis of the Accelerating Medicines Partnership for Alzheimer's Disease Consortium transcriptomics data, as well as qPCR analysis using post-mortem samples of AD patients and of the AD mouse model 5xFAD. TREM2 cleavage and secretion were studied in vitro using HEK-293T and HMC3 cell lines. Synaptic plasticity, as evaluated by induction of LTP in hippocampal brain slices, was employed as a measure of sTREM2 actions. RESULTS: Three distinct TREM2 transcripts, namely ENST00000373113 (TREM2230), which encodes the full-length transmembrane receptor, and the alternatively spliced isoforms ENST00000373122 (TREM2222) and ENST00000338469 (TREM2219), are moderately increased in specific brain regions of patients with AD. We provide experimental evidence that TREM2 alternatively spliced isoforms are translated and secreted as sTREM2. Furthermore, our functional analysis reveals that all sTREM2 species inhibit LTP induction, and this effect is abolished by the GABAA receptor antagonist picrotoxin. CONCLUSIONS: TREM2 transcripts can give rise to a heterogeneous pool of sTREM2 which acts to inhibit LTP. These results provide novel insight into the generation, regulation, and function of sTREM2 which fits into the complex biology of TREM2 and its role in human health and disease. Given that sTREM2 levels are linked to AD pathogenesis and progression, our finding that sTREM2 species interfere with LTP furthers our understanding about the role of TREM2 in AD.


Asunto(s)
Enfermedad de Alzheimer , Potenciación a Largo Plazo , Animales , Ratones , Humanos , Enfermedad de Alzheimer/genética , Isoformas de Proteínas/genética , Encéfalo , Línea Celular , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...