Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Rep ; 73(2): 551-562, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33476036

RESUMEN

BACKGROUND: Omeprazole (OME), a most frequently used proton pump inhibitor in gastric acidosis, is evident to show many adverse effects, including genetic instability. This study evaluated toxicogenic effects of OME in Mus musculus. METHODS: For this study, 40 male Swiss mice were divided into 8 groups (n = 5) and treated with OME at doses of 10, 20, and 40 mg/kg and/or treated with the antioxidants retinol palmitate (100 IU/kg) and ascorbic acid (2.0 µM/kg). Cyclophosphamide 50 mg/kg, (cytotoxic agent) and the vehicle were served as positive and negative control group, respectively. After 14 days of treatment, the stomach cells along with the bone marrow and peripheral blood lymphocytes were collected and submitted to the comet assay (alkaline version) and micronucleus test. Additionally, hematological and biochemical parameters of the animals were also determined inspect of vehicle group. RESULTS: The results suggest that OME at all doses induced genotoxicity and mutagenicity in the treated cells. However, in association with the antioxidants, these effects were modulated and/or inhibited along with a DNA repair capacity. CONCLUSIONS: Taken together, antioxidants (such as retinol palmitate and ascorbic acid) may be one of the best options to counteract OME-induced cytogenetic instability.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Diterpenos/farmacología , Omeprazol/toxicidad , Ésteres de Retinilo/farmacología , Animales , Antineoplásicos/farmacología , Ensayo Cometa , Ciclofosfamida/toxicidad , Reparación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Mutagénesis/efectos de los fármacos , Omeprazol/administración & dosificación , Inhibidores de la Bomba de Protones/administración & dosificación , Inhibidores de la Bomba de Protones/toxicidad
2.
Chem Biol Interact ; 311: 108776, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31369745

RESUMEN

Omeprazole (OM), a prototype proton pump inhibitor, oxidizes thiol groups and induces DNA damage. The aim of this study was to evaluate the oxidative effects of omeprazole and its interactions with ascorbic acid (AA, 50 µM) and retinol palmitate (RP) in proficient and deficient Saccharomyces cerevisiae strains, as well as levels of cytogenetic damage in Sarcoma 180 (S180) cells. Omeprazole was tested at concentrations of 10, 20 and 40 µg/mL, whereas H2O2 (10 mM), cyclophosphamide (20 mg/mL), and saline (0.9% NaCl solution) were employed as stressor, positive control, and negative control, respectively. Results revealed that omeprazole concentration-dependently induces oxidative effects in S. cerevisiae strains. However, omeprazole co-treated with ascorbic acid (50 µM) and retinol palmitate (100 IU) significantly modulated the oxidative damage inflected on the S. cerevisiae strains. Furthermore, omeprazole did not produce micronucleus formation and chromosomal bridges in S180 cells, but induced shoots. Significant increase in karyolysis and karyorrhexis were also observed with the omeprazole treated groups, which was modulated by co-treatment with ascorbic acid and retinol palmitate. Taken all together, it is suggested that ascorbic acid and retinol palmitate can substantially modulate the oxidative damage caused by omeprazole on the S. cerevisiae strains, however, much precaution is recommended with omeprazole and antioxidant co-treatment.


Asunto(s)
Ácido Ascórbico/farmacología , Aberraciones Cromosómicas/efectos de los fármacos , Omeprazol/farmacología , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Vitamina A/análogos & derivados , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclofosfamida/toxicidad , Diterpenos , Peróxido de Hidrógeno/toxicidad , Ratones , Pruebas de Micronúcleos , Ésteres de Retinilo , Vitamina A/farmacología
4.
Chemosphere ; 204: 220-226, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29656158

RESUMEN

Omeprazole (OME) is a proton pump inhibitor used for the treatment of various gastric and intestinal disease; however, studies on its effects on the genetic materials are still restricted. The present study aimed to evaluate possible toxicogenic effects of OME in Allium cepa meristems with the application of cytogenetic biomarkers for DNA damage, mutagenic, toxic and cytotoxic effects. Additionally, retinol palmitate (RP) and ascorbic acid (AA) were also co-treated with OME to evaluate possible modulatory effects of OME-induced cytogenetic damages. OME was tested at 10, 20 and 40 µg/mL, while RP and AA at 55 µg/mL and 352.2 µg/mL, respectively. Copper sulphate (0.6 µg/mL) and dechlorinated water were used as positive control and negative control, respectively. The results suggest that OME induced genotoxicity and mutagenicity in A. cepa at all tested concentrations. It was noted that cotreatment of OME with the antioxidant vitamins RP and/or AA significantly (p < 0.05) inhibited and/or modulated all toxicogenic damages induced by OME. These observations demonstrate their antigenotoxic, antimutagenic, antitoxic and anticitotoxic effects in A. cepa. This study indicates that application of antioxidants may be useful tools to overcome OME-induced toxic effects.


Asunto(s)
Allium/efectos de los fármacos , Ácido Ascórbico/farmacología , Omeprazol/toxicidad , Toxicogenética/métodos , Vitamina A/análogos & derivados , Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Diterpenos , Mutagénesis/efectos de los fármacos , Mutágenos , Extractos Vegetales/farmacología , Ésteres de Retinilo , Vitamina A/farmacología
5.
Exp Toxicol Pathol ; 69(5): 293-297, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28216169

RESUMEN

Cancer, the multifactorial pathology and to date is the most lethal causes of death in the world. Cyclophosphamide (CPA) and doxorubicin (DOX) are the individually or combindly used two anticancer drugs. The antineoplastic drugs-mediated genetic instability can be overcome by using antioxidants. The study evaluated the cytogenotoxic modulatory potentials of retinyl palmitate (RP) caused by CPA and DOX in Swiss mice. For this, adult Mus musculus of either sex were divided equally regarding to the gender. Toxicogenetic effects were induced by the intraperitoneal (i.p.) administration of the CPA (20mg/kg) and/or DOX (2mg/kg), following to test for comet assay and micronucleus test in bone marrow cells after 48h (DOX) and 7h (CPA) of the administration of RP (100 IU/kg). Both CPA and DOX significantly (p<0.05) increased with the index and frequency of damages, clastogenic and/or aneugenic effects with the augmenting of micronuclei, demonstrating the cytotoxicity interference on the ratio of normochromatic to polychromatic erythrocytes and bone marrow cells of mice, that were found to reduce in RP treatment groups. In conclusion, RP has a modulatory effect on CPA and DOX-mediated cytogenotoxic events. The findings may be a good indication to manage the antioneoplastic drug-induced stress mediated detrimental effects by using RP, especially as a side effect minimizer.


Asunto(s)
Antineoplásicos/toxicidad , Antioxidantes/farmacología , Ciclofosfamida/toxicidad , Daño del ADN/efectos de los fármacos , Doxorrubicina/toxicidad , Vitamina A/análogos & derivados , Animales , Diterpenos , Femenino , Masculino , Ratones , Ésteres de Retinilo , Vitamina A/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...