Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biochem Funct ; 41(1): 128-137, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36515301

RESUMEN

Dysfunction of the adipose tissue metabolism is considered as a significant hallmark of aging. It has been proposed that α-ß hydrolase domain containing 5 (ABHD5) plays a critical role in the control of lipolysis. However, the role of ABHD5 in the control of lipolysis during aging or exercise is unknown. Here we combined the experimental mouse model with transcriptomic analyzes by using murine and human databases to explore the role of ABHD5 in the adipose tissue during aging and in response to exercise. Transcriptomic data revealed a downregulation of Abhd5 messenger RNA levels in the subcutaneous white adipose tissue (scWAT) over time in individuals from 20 to 69 years old. Aged mice displayed dramatic reduction of ABHD5 protein content and lipolytic-related proteins in the scWAT. Interestingly, 4 weeks of high-intensity interval training increased ABHD5 protein level and restored the lipolytic pathway in the scWAT of aged mice. Altogether, our findings demonstrated that aging affects ABHD5 content in the adipose tissue of mice and humans. Conversely, exercise increases ABHD5 activity, recovering the lipolytic activity in aged mice.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa , Tejido Adiposo , Envejecimiento , Ejercicio Físico , Lipólisis , Adulto , Anciano , Animales , Humanos , Ratones , Persona de Mediana Edad , Adulto Joven , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Tejido Adiposo/enzimología , Envejecimiento/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo
2.
Sci Rep ; 11(1): 3813, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589652

RESUMEN

The maintenance of mitochondrial activity in hypothalamic neurons is determinant to the control of energy homeostasis in mammals. Disturbs in the mitochondrial proteostasis can trigger the mitonuclear imbalance and mitochondrial unfolded protein response (UPRmt) to guarantee the mitochondrial integrity and function. However, the role of mitonuclear imbalance and UPRmt in hypothalamic cells are unclear. Combining the transcriptomic analyses from BXD mice database and in vivo experiments, we demonstrated that physical training alters the mitochondrial proteostasis in the hypothalamus of C57BL/6J mice. This physical training elicited the mitonuclear protein imbalance, increasing the mtCO-1/Atp5a ratio, which was accompanied by high levels of UPRmt markers in the hypothalamus. Also, physical training increased the maximum mitochondrial respiratory capacity in the brain. Interestingly, the transcriptomic analysis across several strains of the isogenic BXD mice revealed that hypothalamic mitochondrial DNA-encoded genes were negatively correlated with body weight and several genes related to the orexigenic response. As expected, physical training reduced body weight and food intake. Interestingly, we found an abundance of mt-CO1, a mitochondrial DNA-encoded protein, in NPY-producing neurons in the lateral hypothalamus nucleus of exercised mice. Collectively, our data demonstrated that physical training altered the mitochondrial proteostasis and induced the mitonuclear protein imbalance and UPRmt in hypothalamic cells.


Asunto(s)
Metabolismo Energético/genética , Mitocondrias/genética , Proteostasis/genética , Respuesta de Proteína Desplegada/genética , Animales , Humanos , Hipotálamo/metabolismo , Ratones , Mitocondrias/metabolismo , Neuronas/metabolismo , Condicionamiento Físico Animal/fisiología
3.
J Gerontol A Biol Sci Med Sci ; 75(12): 2258-2261, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32173728

RESUMEN

The impairment of the mitochondrial functions is a hallmark of aging. During aging, there is a downregulation of two mechanisms strictly associated with mitochondrial integrity, including the mitonuclear imbalance (eg, imbalance in mitochondrial- versus nuclear-encoded mitochondrial proteins) and the mitochondrial unfolded protein response (UPRmt). Here, we evaluated the effects of aerobic exercise in the mitonuclear imbalance and UPRmt markers in the skeletal muscle of old mice. We combined the physiological tests, molecular and bioinformatic analyzes to evaluate the effects of 4 weeks of aerobic exercise training on mitonuclear imbalance and UPRmt markers in the skeletal muscle of young (2 months) and aged (24 months) C57BL/6J mice. Initially, we found that aging reduced several mitochondrial genes in the gastrocnemius muscle, and it was accompanied by the low levels of UPRmt markers, including Yme1l1 and Clpp mRNA. As expected, physical training improved the whole-body metabolism and physical performance of aged mice. The aerobic exercise increased key proteins involved in the mitochondrial biogenesis/functions (VDAC and SIRT1) along with mitochondrial-encoded genes (mtNd1, mtCytB, and mtD-Loop) in the skeletal muscle of old mice. Interestingly, aerobic exercise induced the mitonuclear imbalance, increasing MTCO1/ATP5a ratio and UPRmt markers in the skeletal muscle, including HSP60, Lonp1, and Yme1L1 protein levels in the gastrocnemius muscle of aged mice. These data demonstrate that aerobic exercise training induced mitonuclear imbalance and UPRmt in the skeletal muscle during aging. These phenomena could be involved in the improvement of the mitochondrial metabolism and oxidative capacity in aged individuals.


Asunto(s)
Envejecimiento/fisiología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Respuesta de Proteína Desplegada/fisiología , Animales , Endopeptidasa Clp/metabolismo , Masculino , Metaloendopeptidasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Sirtuina 1/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
4.
Eur J Nutr ; 59(6): 2427-2437, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31494696

RESUMEN

PURPOSE: Nicotinamide riboside (NR) acts as a potent NAD+ precursor and improves mitochondrial oxidative capacity and mitochondrial biogenesis in several organisms. However, the effects of NR supplementation on aerobic performance remain unclear. Here, we evaluated the effects of NR supplementation on the muscle metabolism and aerobic capacity of sedentary and trained mice. METHODS: Male C57BL/6 J mice were supplemented with NR (400 mg/Kg/day) over 5 and 10 weeks. The training protocol consisted of 5 weeks of treadmill aerobic exercise, for 60 min a day, 5 days a week. Bioinformatic and physiological assays were combined with biochemical and molecular assays to evaluate the experimental groups. RESULTS: NR supplementation by itself did not change the aerobic performance, even though 5 weeks of NR supplementation increased NAD+ levels in the skeletal muscle. However, combining NR supplementation and aerobic training increased the aerobic performance compared to the trained group. This was accompanied by an increased protein content of NMNAT3, the rate-limiting enzyme for NAD + biosynthesis and mitochondrial proteins, including MTCO1 and ATP5a. Interestingly, the transcriptomic analysis using a large panel of isogenic strains of BXD mice confirmed that the Nmnat3 gene in the skeletal muscle is correlated with several mitochondrial markers and with different phenotypes related to physical exercise. Finally, NR supplementation during aerobic training markedly increased the amount of type I fibers in the skeletal muscle. CONCLUSION: Taken together, our results indicate that NR may be an interesting strategy to improve mitochondrial metabolism and aerobic capacity.


Asunto(s)
Aerobiosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Compuestos de Piridinio/metabolismo , Compuestos de Piridinio/farmacología , Animales , Respiración de la Célula/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacología
5.
Life Sci ; 211: 1-7, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30195617

RESUMEN

AIMS: Nicotinamide Riboside (NR) is a NAD+ booster with wide physiological repercussion including the improvement on glucose and lipid homeostasis, increasing the life expectancy in mammals. However, the effects of NR on metabolism are only partially known. Here, we evaluated the effects of NR on the thermogenic response, highlighting the brown adipose tissue (BAT) in lean mice. MAIN METHODS: Male C57BL/67 mice were supplement with NR (400 mg/Kg/day) during 5 weeks. The Comprehensive Lab Animal Monitoring System (CLAMS) and thermographic images were used to evaluated the physiological effects of NR treatment. The BAT were extracted and analyzed by Western Blotting and qPCR. Also, bioinformatics analyses were performed to establish the connection between the NAD+ synthesis pathway in BAT and thermogenic response in several isogenic strains of BXD mice. KEY FINDINGS: Transcriptomic analysis revealed that genes involved in NAD+ synthesis (Nampt and Nmnat1) in the BAT were negatively correlated with body weight and fat mass. The heat map showed a strong positive correlation between Nampt and Ucp1 mRNA in BAT and body temperature in several strains of BXD lean mice. The experimental approaches demonstrated that oral NR supplementation reduced the abdominal visceral fat depots, with discrete impact on oxygen consumption in C57BL/6J mice. Interestingly, NR significantly increased the body temperature, and this phenomenon was accompanied by high levels of UCP1 protein content and Pgc1α mRNA in BAT. SIGNIFICANCE: This study demonstrated the oral NR supplementation was sufficient to induce the thermogenic response in lean mice changing the BAT metabolism.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Temperatura Corporal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Niacinamida/análogos & derivados , Termogénesis/efectos de los fármacos , Delgadez/tratamiento farmacológico , Tejido Adiposo Pardo/efectos de los fármacos , Administración Oral , Animales , Citocinas/genética , Citocinas/metabolismo , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Niacinamida/administración & dosificación , Niacinamida/farmacología , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Compuestos de Piridinio , Delgadez/metabolismo , Delgadez/patología , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA