Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Entomol ; 51(6): 1182-1190, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36178322

RESUMEN

Reduced tillage methods such as strip tillage are often combined with cover crop mixtures to provide agronomic benefits which can support crop and soil health. However, reduced tillage and cover crop species/arrangements effects on arthropods is less understood and results of previous studies have varied. In this study, we examined how agriculturally relevant pest and beneficial arthropod species were impacted by tillage and cover crop methods in USDA-certified organic Cucurbita (L.) (Cucurbitales: Cucurbitaceae). Aphididae were the most observed foliar pests and abundance was highest in full tillage treatment plots while foliar herbivores overall, excluding Aphididae, were more abundant in strip tillage treatment plots regardless of cover crop arrangement. Formicidae was also observed more on foliage, flowers, and in pitfall traps in full tillage, similarly to Aphididae. Parasitica were the most observed foliar natural enemies with increased abundance in strip tillage treatments. Activity densities of several epigeal natural enemies were also higher in strip tillage compared to full tillage. No significant effects of tillage and cover crop treatments were observed on flower visitation rates of Eucera pruinosa (Say) (Hymenoptera: Apidae), an important pollinator of Cucurbita, while the highest visitation rates of Apis mellifera (L.) (Hymenoptera: Apidae) and Bombus spp. (Latreille) (Hymenoptera: Apidae) were in strip tillage treatments. These results suggest that reduced tillage methods can support greater abundances of natural enemies and possibly pollinators. This may lead to enhanced biological control and pollination, but impacts may vary for different arthropod species and crops.


Asunto(s)
Hormigas , Áfidos , Cucurbita , Abejas , Animales , Agricultura/métodos , Productos Agrícolas , Polinización
2.
Weed Res ; 61(6): 475-485, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35874455

RESUMEN

Zero tillage (ZT) is widely promoted throughout India's Eastern Indo-Gangetic Plains (IGP) because of its potential to increase wheat productivity and resilience to abiotic stresses. Weeds remain a major barrier to ZT adoption, yet it remains unclear how ZT will influence weed communities in the Eastern-IGP. The primary objective of this study was to characterise the composition of the germinable weed seedbank sampled just prior to the wheat phase of rice-wheat farms in Bihar and Eastern Uttar Pradesh, and examine whether adoption of ZT wheat has shifted weed community composition compared to conventional tillage (CT). Additionally, we examined whether edaphic properties and topography (upland vs. lowland) explain variation in germinable weed seedbank communities. In December 2014, we evaluated the germinable seedbank from 72 fields differing in their historic (>=3 year) tillage practices (ZT vs. CT) in three regions: Samastipur-Vaishali-Muzaffarpur (SVM), Ara-Buxar and Maharajgunj-Kushinagar. Weed community composition and species richness varied by region and topography. ZT adoption was associated with lower relative density of Chenopodium album in the germinable seedbank and lower emergence of Phalaris minor seedlings within farmers' fields. In upland topographies of the SVM region, ZT adoption was also associated with greater relative abundance of Solanum nigrum in the weed seedbank. However, differences between tillage systems in individual species were not large enough to result in detection of differences at the whole-community level. Variation in edaphic properties, most notably soil texture and pH, explained 51% of the variation in the weed seedbank community. Our work suggests several frequent but poorly understood species (e.g. Mazus pumilus and Grangea maderaspatana) in Eastern IGP for which future research should quantify their effects on crop yields. Finally, future work surveying weed species abundance at harvest could further determine the dominant problematic species in these regions.

3.
Oecologia ; 193(2): 389-401, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32548711

RESUMEN

Predators impact prey populations through both consumptive and non-consumptive effects, such as behavioral and physiological changes by prey in response to a predation threat. Additionally, various top-down (e.g. predator characteristics) and bottom-up factors (e.g. plant nutrients) may impact non-consumptive effects, yet little is understood about how these interact. We studied how host-plant choice, leaf consumption, and growth of an herbivore, Pieris rapae, were impacted by different levels of plant nitrogen (N) and two predator species representing varying degrees of threat, Hippodamia convergens (predator of early-instars) and Podisus maculiventris (predator of all-instars). We found that P. rapae adults and larvae made similar choices about bottom-up and top-down factors when threatened by two different predator species. Adults and larvae preferred high N plants when threatened by H. convergens, but plant N did not influence their host plant choice when threatened by P. maculiventris. Additionally, larvae consumed more leaf tissue and grew larger when threatened by H. convergens, but leaf tissue consumption and larval growth did not change under threat by P. maculiventris, suggesting that larvae may change their behavior if they are able to quickly outgrow life stages vulnerable to predation. These results indicate that top-down factors such as predator identity may determine how P. rapae modulate their responses to bottom-up factors such as host plant quality when utilizing anti-predator behaviors.


Asunto(s)
Mariposas Diurnas , Escarabajos , Heterópteros , Animales , Herbivoria , Conducta Predatoria
4.
J Nematol ; 49(1): 114-123, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28512383

RESUMEN

Cover cropping is a common practice in U.S. Midwest carrot production for soil conservation, and may affect soil ecology and plant-parasitic nematodes-to which carrots are very susceptible. This study assessed the impact of cover crops-oats (Avena sativa), radish (Raphanus sativus) cv. Defender, rape (Brassica napus) cv. Dwarf Essex, and a mixture of oats and radish-on plant-parasitic nematodes and soil ecology based on the nematode community in Michigan carrot production systems. Research was conducted at two field sites where cover crops were grown in Fall 2014 preceding Summer 2015 carrot production. At Site 1, root-lesion (Pratylenchus penetrans) and stunt (Tylenchorhynchus sp.) nematodes were present at low population densities (less than 25 nematodes/100 cm3 soil), but were not significantly affected (P > 0.05) by cover crops. At Site 2, P. penetrans population densities were increased (P ≤ 0.05) by 'Defender' radish compared to other cover crops or fallow control during cover crop growth and midseason carrot production. At both sites, there were few short-term impacts of cover cropping on soil ecology based on the nematode community. At Site 1, only at carrot harvest, radish-oats mixture and 'Dwarf Essex' rape alone enriched the soil food web based on the enrichment index (P ≤ 0.05) while rape and radish increased structure index values. At Site 2, bacterivore abundance was increased by oats or radish cover crops compared to control, but only during carrot production. In general, cover crops did not affect the nematode community until nearly a year after cover crop growth suggesting that changes in the soil community following cover cropping may be gradual.

5.
Environ Entomol ; 42(2): 293-306, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23575020

RESUMEN

Cover crop mulch and weeds create habitat complexity in agricultural fields that may influence arthropods. Under strip-tillage systems, planting rows are tilled and preestablished cover crops can remain between rows. In field experiments conducted in Michigan in 2010 and 2011, a preestablished oat (Avena sativa L.) cover crop was allowed to grow between rows of strip-tilled cabbage and killed at 0, 9-14, or 21-27 d after transplanting (DAT). The effects of herbicide intensity and oat kill date on arthropods, weeds, and crop yield were examined. Two levels of herbicide intensity (low or high) were used to manipulate habitat vegetational complexity, with low weed management intensity resulting in more weeds, particularly in 2010. Oat kill date manipulated the amount of cover crop mulch on the soil surface. Later oat kill dates were associated with higher natural enemy abundance. Reduced herbicide intensity was associated with (1) lower abundance of several key cabbage (Brassica oleraceae L.) pests, and (2) greater abundance of important natural enemy species. Habitats with both later oat kill dates and reduced herbicide intensity contained (1) fewer herbivores with chewing feeding guilds and more specialized diet breadths, and (2) greater abundance of active hunting natural enemies. Oats reduced cabbage yield when oat kill was delayed past 9-14 DAT. Yields were reduced under low herbicide intensity treatments in 2010 when weed pressure was greatest. We suspect that increased habitat complexity associated with oat mulches and reduced herbicide intensity enhances biological control in cabbage, although caution should be taken to avoid reducing yields or enhancing hyperparasitism.


Asunto(s)
Agricultura/métodos , Artrópodos/fisiología , Avena/crecimiento & desarrollo , Biota , Brassica/crecimiento & desarrollo , Ecosistema , Control de Malezas/métodos , Animales , Cadena Alimentaria , Herbicidas/farmacología , Herbivoria , Michigan , Estaciones del Año , Factores de Tiempo
6.
J Econ Entomol ; 102(1): 115-20, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19253625

RESUMEN

Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), a common insect pest in Europe and a new invasive pest in North America, causes severe damage to cruciferous crops. In the United States, C. nasturtii was first reported in western New York in 2004. From 2005 to 2007, field surveys were conducted in western New York to investigate the occurrence of C. nasturtii in weeds that might serve as a reservoir for this pest. The results indicate that 12 cruciferous weed species were found in and around commercial vegetable crucifer plantings, and C. nasturtii emergence was detected from most of them. The number of C. nasturtii that emerged from the weeds was low and varied by species, year, and the timing of sampling. Peak emergence from weeds in fallow fields occurred in June. Nonchoice tests in the laboratory showed that significantly fewer larvae were found on cruciferous weeds than on cauliflower plants, although C. nasturtii could lay eggs on the weeds. When weeds and cauliflower plants were simultaneously exposed to C. nasturtii adults for egg laying (choice tests), 97.3% of the C. nasturtii larvae were found on the cauliflower plants 8 d after oviposition, 2.7% on Sinapis arvensis L., and none on the other five weed species tested. Our results suggest that cruciferous weeds can serve as alternative host plants of C. nasturtii but are less suitable than cauliflower. A method of detecting C. nasturtii on weeds and control of C. nasturtii through weed management are discussed.


Asunto(s)
Brassicaceae/parasitología , Dípteros/fisiología , Oviposición , Animales , New York , Control de Plagas
7.
Am J Bot ; 95(4): 447-53, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21632369

RESUMEN

The nonnative vine Vincetoxicum rossicum threatens several ecosystems in the Lower Great Lakes Basin of North America. One feature that may contribute to its invasiveness is the production of some seeds with multiple embryos (polyembryony), which may be beneficial as a bet-hedging strategy in variable environments. However, lower seed reserves per embryo in polyembryonic seeds may entail costs in low-light environments. The effect of seed from three embryonic classes (1, 2, or 3 embryos/seed) on V. rossicum survival and growth was studied under two forest understory light environments: full canopy (shade) or canopy gaps (light) in New York state. Two seedling cohorts were planted, in May 2004 and in May 2005. The survival and growth of seedlings was monitored biweekly for two (2005 cohort) or three (2004 cohort) seasons. For both cohorts, plants grown in canopy shade had reduced survival and growth compared with those grown in gaps. Contrary to expectations, seed embryo number had no effect on the final height, survival, or dry mass of plants in either habitat. Our results suggest that any fitness advantage provided by polyembryony may be habitat (light) dependent and not a general trait that affords V. rossicum a benefit in all habitats colonized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...