Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(13): e2303498, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38329408

RESUMEN

Cardiovascular diseases are the leading cause of death and current treatments such as stents still suffer from disadvantages. Balloon expansion causes damage to the arterial wall and limited and delayed endothelialization gives rise to restenosis and thrombosis. New more performing materials that circumvent these disadvantages are required to improve the success rate of interventions. To this end, the use of a novel polymer, poly(hexamethylene terephthalate), is investigated for this application. The synthesis to obtain polymers with high molar masses up to 126.5 kg mol-1 is optimized and a thorough chemical and thermal analysis is performed. The polymers are 3D-printed into personalized cardiovascular stents using the state-of-the-art solvent-cast direct-writing technique, the potential of these stents to expand using their shape memory behavior is established, and it is shown that the stents are more resistant to compression than the poly(l-lactide) benchmark. Furthermore, the polymer's hydrolytic stability is demonstrated in an accelerated degradation study of 6 months. Finally, the stents are subjected to an in vitro biological evaluation, revealing that the polymer is non-hemolytic and supports significant endothelialization after only 7 days, demonstrating the enormous potential of these polymers to serve cardiovascular applications.


Asunto(s)
Impresión Tridimensional , Stents , Humanos , Andamios del Tejido/química , Células Endoteliales de la Vena Umbilical Humana , Polímeros/química , Ensayo de Materiales , Poliésteres/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
2.
Sci Rep ; 13(1): 20004, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968442

RESUMEN

Electronic skins (e-skins) aim to replicate the capabilities of human skin by integrating electronic components and advanced materials into a flexible, thin, and stretchable substrate. Electrical impedance tomography (EIT) has recently been adopted in the area of e-skin thanks to its robustness and simplicity of fabrication compared to previous methods. However, the most common EIT configurations have limitations in terms of low sensitivities in areas far from the electrodes. Here we combine two piezoresistive materials with different conductivities and charge carriers, creating anisotropy in the sensitive part of the e-skin. The bottom layer consists of an ionically conducting hydrogel, while the top layer is a self-healing composite that conducts electrons through a percolating carbon black network. By changing the pattern of the top layer, the resulting distribution of currents in the e-skin can be tuned to locally adapt the sensitivity. This approach can be used to biomimetically adjust the sensitivities of different regions of the skin. It was demonstrated how the sensitivity increased by 500% and the localization error reduced by 40% compared to the homogeneous case, eliminating the lower sensitivity regions. This principle enables integrating the various sensing capabilities of our skins into complex 3D geometries. In addition, both layers of the developed e-skin have self-healing capabilities, showing no statistically significant difference in localization performance before the damage and after healing. The self-healing bilayer e-skin could recover full sensing capabilities after healing of severe damage.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Humanos , Impedancia Eléctrica , Conductividad Eléctrica , Electrónica , Tomografía
3.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941219

RESUMEN

Wearable robots are widely used to enhance, support or assist humans in different tasks. To accomplish this scope, the interaction between the human body and the device should be comfortable, smooth, high-efficient to transfer forces, and safe for the user. Nevertheless, the pressure and shear stress related to these goals have been overlooked or partially analysed. In this sense, it is crucial to understand the soft tissue response through the in-vivo characterisation of multiple areas of the human body. In fact, soft tissue characterisation plays an essential role in calculating the pressure distribution and shear stress. However, current approaches to estimating soft tissue properties are unsuitable for deployment with multiple human body areas. Hence, this work presents a novel methodology to ease the characterisation of soft tissues using a robotic arm and a 3D superficial scanner. First, the robotic arm is validated by comparing the tensile and compression tests to the indentation tests done by the robot, estimating a 10,4% error. The preliminary experimental tests present the hyperelastic model which fit two adjacent zones of the forearm. This analysis can be extended in several ways, such as: calculating the shear stress, the energy losses or deformations caused by the interaction, and investigating the pressure distribution of different types of physical interfaces.


Asunto(s)
Antebrazo , Dispositivos Electrónicos Vestibles , Humanos , Estrés Mecánico , Fenómenos Biomecánicos
4.
Polymers (Basel) ; 15(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37688153

RESUMEN

Despite being primarily categorized as non-autonomous self-healing polymers, we demonstrate the ability of Diels-Alder polymers to heal macroscopic damages at room temperature, resulting in complete restoration of their mechanical properties within a few hours. Moreover, we observe immediate partial recovery, occurring mere minutes after reuniting the fractured surfaces. This fast room-temperature healing is accomplished by employing an off-stoichiometric maleimide-to-furan ratio in the polymer network. Through an extensive investigation of seven Diels-Alder polymers, the influence of crosslink density on self-healing, thermal, and (thermo-)mechanical performance was thoroughly examined. Crosslink density variations were achieved by adjusting the molecular weight of the monomers or utilizing the off-stoichiometric maleimide-to-furan ratio. Quasistatic tensile testing, dynamic mechanical analysis, dynamic rheometry, differential scanning calorimetry, and thermogravimetric analysis were employed to evaluate the individual effects of these parameters on material performance. While lowering the crosslink density in the polymer network via decreasing the off-stoichiometric ratio demonstrated the greatest acceleration of healing, it also led to a slight decrease in (dynamic) mechanical performance. On the other hand, reducing crosslink density using longer monomers resulted in faster healing, albeit to a lesser extent, while maintaining the (dynamic) mechanical performance.

5.
Front Robot AI ; 10: 1206579, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37501744

RESUMEN

The variability in the shapes and sizes of objects presents a significant challenge for two-finger robotic grippers when it comes to manipulating them. Based on the chemistry of vitrimers (a new class of polymer materials that have dynamic covalent bonds, which allow them to reversibly change their mechanical properties under specific conditions), we present two designs as 3D-printed shape memory polymer-based shape-adaptive fingertips (SMP-SAF). The fingertips have two main properties needed for an effective grasping. First, the ability to adapt their shape to different objects. Second, exhibiting variable rigidity, to lock and retain this new shape without the need for any continuous external triggering system. Our two design strategies are: 1) A curved part, which is suitable for grasping delicate and fragile objects. In this mode and prior to gripping, the SMP-SAFs are straightened by the force of the parallel gripper and are adapted to the object by shape memory activation. 2) A straight part that takes on the form of the objects by contact force with them. This mode is better suited for gripping hard bodies and provides a more straightforward shape programming process. The SMP-SAFs can be programmed by heating them up above glass transition temperature (54°C) via Joule-effect of the integrated electrically conductive wire or by using a heat gun, followed by reshaping by the external forces (without human intervention), and subsequently fixing the new shape upon cooling. As the shape programming process is time-consuming, this technique suits adaptive sorting lines where the variety of objects is not changed from grasp to grasp, but from batch to batch.

6.
Sci Rep ; 13(1): 8820, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258618

RESUMEN

Self-healing soft robots show enormous potential to recover functional performance after healing the damages. However, healing in these systems is limited by the recontact of the fracture surfaces. This paper presents for the first time a shape memory alloy (SMA) wire-reinforced soft bending actuator made out of a castor oil-based self-healing polymer, with the incorporated ability to recover from large incisions via shape memory assisted healing. The integrated SMA wires serve three major purposes; (i) Large incisions are closed by contraction of the current-activated SMA wires that are integrated into the chamber. These pull the fracture surfaces into contact, enabling the healing. (ii) The heat generated during the activation of the SMA wires is synergistically exploited for accelerating the healing. (iii) Lastly, during pneumatic actuation, the wires constrain radial expansion and one-side longitudinal extension of the soft chamber, effectuating the desired actuator bending motion. This novel approach of healing is studied via mechanical and ultrasound tests on the specimen level, as well as via bending characterization of the pneumatic robot in multiple damage healing cycles. This technology allows soft robots to become more independent in terms of their self-healing capabilities from human intervention.

7.
Macromol Rapid Commun ; 44(8): e2200955, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36755500

RESUMEN

Acrylate-endcapped urethane-based precursors constituting a poly(D,L-lactide)/poly(ε-caprolactone) (PDLLA/PCL) random copolymer backbone are synthesized with linear and star-shaped architectures and various molar masses. It is shown that the glass transition and thus the actuation temperature could be tuned by varying the monomer content (0-8 wt% ε-caprolactone, Tg,crosslinked = 10-42 °C) in the polymers. The resulting polymers are analyzed for their physico-chemical properties and viscoelastic behavior (G'max = 9.6-750 kPa). The obtained polymers are subsequently crosslinked and their shape-memory properties are found to be excellent (Rr = 88-100%, Rf = 78-99.5%). Moreover, their potential toward processing via various additive manufacturing techniques (digital light processing, two-photon polymerization and direct powder extrusion) is evidenced with retention of their shape-memory effect. Additionally, all polymers are found to be biocompatible in direct contact in vitro cell assays using primary human foreskin fibroblasts (HFFs) through MTS assay (up to ≈100% metabolic activity relative to TCP) and live/dead staining (>70% viability).


Asunto(s)
Poliésteres , Ingeniería de Tejidos , Humanos , Poliésteres/química , Polímeros/química , Uretano , Fibroblastos , Materiales Biocompatibles/química
8.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679614

RESUMEN

In the field of soft robotics, knowledge of material science is becoming more and more important. However, many researchers have a background in only one of both domains. To aid the understanding of the other domain, this tutorial describes the complete process from polymer synthesis over fabrication to testing of a soft finger. Enough background is provided during the tutorial such that researchers from both fields can understand and sharpen their knowledge. Self-healing polymers are used in this tutorial, showing that these polymers that were once a specialty, have become accessible for broader use. The use of self-healing polymers allows soft robots to recover from fatal damage, as shown in this tutorial, which increases their lifespan significantly.


Asunto(s)
Dedos , Robótica , Polímeros
9.
Molecules ; 27(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744920

RESUMEN

Magnetic composites and self-healing materials have been drawing much attention in their respective fields of application. Magnetic fillers enable changes in the material properties of objects, in the shapes and structures of objects, and ultimately in the motion and actuation of objects in response to the application of an external field. Self-healing materials possess the ability to repair incurred damage and consequently recover the functional properties during healing. The combination of these two unique features results in important advances in both fields. First, the self-healing ability enables the recovery of the magnetic properties of magnetic composites and structures to extend their service lifetimes in applications such as robotics and biomedicine. Second, magnetic (nano)particles offer many opportunities to improve the healing performance of the resulting self-healing magnetic composites. Magnetic fillers are used for the remote activation of thermal healing through inductive heating and for the closure of large damage by applying an alternating or constant external magnetic field, respectively. Furthermore, hard magnetic particles can be used to permanently magnetize self-healing composites to autonomously re-join severed parts. This paper reviews the synthesis, processing and manufacturing of magnetic self-healing composites for applications in health, robotic actuation, flexible electronics, and many more.


Asunto(s)
Magnetismo , Robótica , Campos Magnéticos
10.
Polymers (Basel) ; 14(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35566827

RESUMEN

Humins waste valorization is considered to be an essential pathway to improve the economic viability of many biorefinery processes and further promote their circularity by avoiding waste formation. In this research, the incorporation of humins in a Diels-Alder (DA) polymer network based on furan-maleimide thermoreversible crosslinks was studied. A considerable enhancement of the healing efficiency was observed by just healing for 1 h at 60 °C at the expense of a reduction of the material mechanical properties, while the unfilled material showed no healing under the same conditions. Nevertheless, the thermal healing step favored the irreversible humins polycondensation, thus strengthening the material while keeping the enhanced healing performance. Our hypothesis states a synergistic healing mechanism based on humins flowing throughout the damage, followed by thermal humins crosslinking during the healing trigger, together with DA thermoreversible bonds recombination. A multi-material soft robotic gripper was manufactured out of the proposed material, showing not only improved recovery of the functional performance upon healing but also stiffness-tunable features by means of humins thermal crosslinking. For the first time, both damage healing and zone reinforcement for further damage prevention are achieved in a single intrinsic self-healing system.

11.
Adv Mater ; 34(1): e2104798, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34610181

RESUMEN

Soft robots are, due to their softness, inherently safe and adapt well to unstructured environments. However, they are prone to various damage types. Self-healing polymers address this vulnerability. Self-healing soft robots can recover completely from macroscopic damage, extending their lifetime. For developing healable soft robots, various formative and additive manufacturing methods have been exploited to shape self-healing polymers into complex structures. Additionally, several novel manufacturing techniques, noted as (re)assembly binding techniques that are specific to self-healing polymers, have been created. Herein, the wide variety of processing techniques of self-healing polymers for robotics available in the literature is reviewed, and limitations and opportunities discussed thoroughly. Based on defined requirements for soft robots, these techniques are critically compared and validated. A strong focus is drawn to the reversible covalent and (physico)chemical cross-links present in the self-healing polymers that do not only endow healability to the resulting soft robotic components, but are also beneficial in many manufacturing techniques. They solve current obstacles in soft robots, including the formation of robust multi-material parts, recyclability, and stress relaxation. This review bridges two promising research fields, and guides the reader toward selecting a suitable processing method based on a self-healing polymer and the intended soft robotics application.

12.
Polymers (Basel) ; 13(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34503023

RESUMEN

Self-healing materials can prolong the lifetime of structures and products by enabling the repairing of damage. However, detecting the damage and the progress of the healing process remains an important issue. In this study, self-healing, piezoresistive strain sensor fibers (ShSFs) are used for detecting strain deformation and damage in a self-healing elastomeric matrix. The ShSFs were embedded in the self-healing matrix for the development of self-healing sensor fiber composites (ShSFC) with elongation at break values of up to 100%. A quadruple hydrogen-bonded supramolecular elastomer was used as a matrix material. The ShSFCs exhibited a reproducible and monotonic response. The ShSFCs were investigated for use as sensorized electronic skin on 3D-printed soft robotic modules, such as bending actuators. Depending on the bending actuator module, the electronic skin was loaded under either compression (pneumatic-based module) or tension (tendon-based module). In both configurations, the ShSFs could be successfully used as deformation sensors, and in addition, detect the presence of damage based on the sensor signal drift. The sensor under tension showed better recovery of the signal after healing, and smaller signal relaxation. Even with the complete severing of the fiber, the piezoresistive properties returned after the healing, but in that case, thermal heat treatment was required. With their resilient response and self-healing properties, the supramolecular fiber composites can be used for the next generation of soft robotic modules.

13.
Polymers (Basel) ; 13(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34372124

RESUMEN

In recent work, the thermoreversible Diels-Alder reaction between furan and maleimide functional groups has been studied extensively in the context of self-healing elastomers and thermosets. To elaborate the influence of the stoichiometric ratio between the maleimide and furan reactive groups on the thermomechanical properties and viscoelastic behavior of formed reversible covalent polymer networks, a series of Diels-Alder-based networks with different stoichiometric ratios was synthesized. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and dynamic rheology measurements were performed on the reversible polymer networks, to relate the reversible network structure to the material properties and reactivity. Such knowledge allows the design and optimization of the thermomechanical behavior of the reversible networks for intended applications. Lowering the maleimide-to-furan ratio creates a deficit of maleimide functional groups, resulting in a decrease in the crosslink density of the system, and a consequent decrease in the glass transition temperature, Young's modulus, and gel transition temperature. The excess of unreacted furan in the system results in faster reaction and healing kinetics and a shift of the reaction equilibrium.

14.
Phys Chem Chem Phys ; 23(3): 2252-2263, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33443241

RESUMEN

The chemical structure and location of substituents on anthracene derivatives influence the electron balance of the aromatic system, thus determining the wavelengths at which light is absorbed, which results in the photochemically induced dimerization or monomerization. Here, the thermal dissociation kinetics of 7 photodimers of 9-substituted anthracene derivatives are studied using a combination of spectroscopic and calorimetric techniques in the condensed state and compared to scarce literature data on thermal dissociation of other anthracene derivatives. The length and chemical structure of the substituent chains have a clear impact on the melting temperatures of the anthracene derivatives and corresponding photodimers. The crystallinity of the photodimers and monomers in turn influences the thermal dissociation kinetics. The thermal dissociation behaviour and previously published photochemistry data are related to the electronic effects of the substituents by means of the Hammett parameters. Stronger electron-withdrawing effects result in larger red shifts of the maximum wavelength λmax for the photodimerization of the anthracene derivatives. It is also shown that for the studied substitutions on the 9-position of anthracene, the higher the magnitude of the electronic effect - both electron-donating and electron-withdrawing - the faster the thermal dissociation kinetics and thus the lower the thermal stability. The strong electronic effects of the substituents on the thermal and photochemical reactivity of the anthracene derivatives and their photodimers allow tuning of the thermal or photochemical responsiveness, e.g. for polymer networks.

15.
Phys Chem Chem Phys ; 22(30): 17306-17313, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32687137

RESUMEN

Thermally and photochemically reversible functional groups, such as photodimers of anthracene derivatives, offer interesting stimuli-responsive behaviour. To evaluate their potential for application in reversible polymer networks, accurate kinetic parameters and knowledge of their thermophysical behaviour are required. Accurate kinetic studies of the thermal dissociation of the photodimers in the condensed state, thus without the influence of solvents on their reactivity, is still lacking. A methodology was set up to accurately evaluate the chemical reaction kinetics and complex phase behaviour during the thermal dissociation of photodimers into their corresponding monomers. Temperature-controlled time-resolved FTIR spectroscopy was used to determine the reaction progress, while non-isothermal DSC measurements were used to study the thermophysical changes, resulting from the thermal dissociation reaction. The thermal dissociation behaviour in the condensed state is more challenging than in the solution state due to the crystallinity of the dimers, stabilizing the dimers and thus slowing down the initial dissociation rates. Distinctly different sets of kinetic parameters were found for the dissociation from the molten and the crystalline state. For experiments performed below the melting temperature of the photodimer, the reaction rate changes abruptly as the dimer is partly dissociated and partly dissolved into the formed monomer. This methodology provides an accurate assessment of the reaction kinetics with detailed knowledge about the complex phase behaviour of the mixture of the anthracene photodimer and monomer during thermal dissociation.

16.
Soft Robot ; 7(6): 711-723, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32160110

RESUMEN

The field of self-healing soft robots was initiated a few years ago. A healing ability can be integrated in soft robots by manufacturing their soft membranes out of synthetic self-healing polymers, more specifically elastomeric Diels-Alder (DA) networks. As such they can recover completely from macroscopic damage, including scratches, cuts, and ruptures. Before this research, these robots were manufactured using a technique named "shaping-through-folding-and-self-healing." This technique requires extensive manual labor, is relatively slow, and does not allow for complex shapes. In this article, an additive manufacturing methodology, fused filament fabrication, is developed for the thermoreversible DA polymers, and the approach is validated on a soft robotic gripper. The reversibility of their network permits manufacturing these flexible self-healing polymers through reactive printing into the complex shapes required in soft robotics. The degree of freedom in the design of soft robotics that this new manufacturing technique offers is illustrated through the construction of adaptive DHAS gripper fingers, based on the design by FESTO. Being constructed out of self-healing soft flexible polymer, the fingers can recover entirely from large cuts, tears, and punctures. This is highlighted through various damage-heal cycles.


Asunto(s)
Robótica , Elasticidad , Dedos , Polímeros , Impresión Tridimensional , Robótica/métodos
17.
PLoS One ; 14(7): e0213954, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31329589

RESUMEN

The current physical goods economy produces materials by extracting finite valuable resources without taking their end of the life and environmental impact into account. Mycelium-based materials offer an alternative fabrication paradigm, based on the growth of materials rather than on extraction. Agricultural residue fibres are inoculated with fungal mycelium, which form an interwoven three-dimensional filamentous network binding the feedstock into a lightweight material. The mycelium-based material is heat-killed after the growing process. In this paper, we investigate the production process, the mechanical, physical and chemical properties of mycelium-based composites made with different types of lignocellulosic reinforcement fibres combined with a white rot fungus, Trametes versicolor. This is the first study reporting the dry density, the Young's modulus, the compressive stiffness, the stress-strain curves, the thermal conductivity, the water absorption rate and a FTIR analyse of mycelium-based composites by making use of a fully disclosed protocol with T. versicolor and five different type of fibres (hemp, flax, flax waste, softwood, straw) and fibre processings (loose, chopped, dust, pre-compressed and tow). The thermal conductivity and water absorption coefficient of the mycelium composites with flax, hemp, and straw have an overall good insulation behaviour in all the aspects compared to conventional materials such as rock wool, glass wool and extruded polystyrene. The conducted tests reveal that the mechanical performance of the mycelium-based composites depends more on the fibre processing (loose, chopped, pre-compressed, and tow), and size than on the chemical composition of the fibres. These experimental results show that mycelium-composites can fulfil the requirements of thermal insulation and have the potential to replace fosile-based composites. The methology used to evaluate the suitability and selection of organic waste-streams proved to be effective for the mycelium-material manufacturing applications.


Asunto(s)
Lignina/química , Micelio/química , Trametes/química , Resistencia a la Tracción
18.
Sci Robot ; 2(9)2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-33157852

RESUMEN

Inspired by the compliance found in many organisms, soft robots are made almost entirely out of flexible, soft material, making them suitable for applications in uncertain, dynamic task environments, including safe human-robot interactions. Their intrinsic compliance absorbs shocks and protects them against mechanical impacts. However, the soft materials used for their construction are highly susceptible to damage, such as cuts and perforations caused by sharp objects present in the uncontrolled and unpredictable environments they operate in. In this research, we propose to construct soft robotics entirely out of self-healing elastomers. On the basis of healing capacities found in nature, these polymers are given the ability to heal microscopic and macroscopic damage. Diels-Alder polymers, being thermoreversible covalent networks, were used to develop three applications of self-healing soft pneumatic actuators (a soft gripper, a soft hand, and artificial muscles). Soft pneumatic actuators commonly experience perforations and leaks due to excessive pressures or wear during operation. All three prototypes were designed using finite element modeling and mechanically characterized. The manufacturing method of the actuators exploits the self-healing behavior of the materials, which can be recycled. Realistic macroscopic damage could be healed entirely using a mild heat treatment. At the location of the scar, no weak spots were created, and the full performance of the actuators was nearly completely recovered after healing.

19.
Bioinspir Biomim ; 10(4): 046007, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26151944

RESUMEN

Inspired by the intrinsic softness and the corresponding embodied intelligence principles, soft pneumatic actuators (SPA) have been developed, which ensure safe interaction in unstructured, unknown environments. Due to their intrinsic softness, these actuators have the ability to resist large mechanical impacts. However, the soft materials used in these structures are in general susceptible to damage caused by sharp objects found in the unstructured environments. This paper proposes to integrate a self-healing (SH-) mechanism in SPAs, such that cuts, tears and perforations in the actuator can be self-healed. Diels-Alder (DA-) polymers, covalent polymer network systems based on the thermoreversible DA-reaction, were selected and their mechanical, as well as SH-properties, are described. To evaluate the feasibility of developing an SPA constructed out of SH-material, a single cell prototype, a SH-soft pneumatic cell (SH-SPC), was constructed entirely out of DA-polymers. Exploiting the SH-property of the DA-polymers, a completely new shaping process is presented in this paper, referred to as 'shaping through folding and self-healing'. 3D polygon structures, like the cubic SH-SPC, can be constructed by folding SH-polymer sheet. The sides of the structures can be sealed and made airtight using a SH-procedure at relatively low temperatures (<90 °C). Both the (thermo) mechanical and SH-properties of the SH-SPC prototype were experimentally validated and showed excellent performances. Macroscopic incisions in the prototype were completely healed using a SH-procedure (<70 °C). Starting from this single-cell prototype, it is straight-forward to develop a multi-cell prototype, the first SPA ever built completely out of SH-polymers.


Asunto(s)
Materiales Biomiméticos/química , Biomimética/instrumentación , Músculo Esquelético , Polímeros/química , Robótica/instrumentación , Cicatrización de Heridas , Animales , Biomimética/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Ensayo de Materiales , Proyectos Piloto , Presión , Robótica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...